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Abstract
Recent research has highlighted privacy as a primary concern
for IoT device users. However, due to the challenges in con-
ducting a large-scale study to analyze thousands of devices,
there has been less study on how pervasive unauthorized data
exposure has actually become on today’s IoT devices and the
privacy implications of such exposure. To fill this gap, we
leverage the observation that most IoT devices on the market
today use their companion mobile apps as an intermediary to
process, label and transmit the data they collect. As a result,
the semantic information carried by these apps can be recov-
ered and analyzed automatically to track the collection and
sharing of IoT data.

In this paper, we report the first of such a study, based
upon a new framework IoTProfiler, which statically analyzes
a large number of companion apps to infer and track the data
collected by their IoT devices. Our approach utilizes machine
learning to detect the code snippet in a companion app that
handles IoT data and further recovers the semantics of the
data from the snippet to evaluate whether their exposure has
been properly communicated to the user. By running IoTPro-
filer on 6,208 companion apps, our research has led to the
discovery of 1,973 apps that expose user data without proper
disclosure, covering IoT devices from at least 1,559 unique
vendors. Our findings include highly sensitive information,
such as health status and home address, and the pervasiveness
of unauthorized sharing of the data to third parties, including
those in different countries. Our findings highlight the urgent
need to regulate today’s IoT industry to protect user privacy.

1 Introduction

The pervasiveness of Internet of Thing (IoT) devices has
brought in concerns about their privacy implications when
operating in scenarios such as smart homes, health care, etc.
A recent study has uncovered unauthorized data collection
and exposure in these devices, which could lead to significant
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privacy breaches [63]. For example, it is reported that ven-
dors of smart sex toys are sued for their “spying vibrators”
stealthily gathering private user data such as one’s email, de-
vice usage patterns (vibration duration, start and stop time,
etc.) [45]. With the recent discussion on IoT data transparency
supported by privacy policies or data labels [25, 31], little has
been done, however, from the side of device vendors to clarify
what data are collected and how the data are used and shared.
As a result, today’s IoT users are still under the persistent
risk of uninformed data exposure, which not only endangers
their privacy but also weakens public trust in modern IoT
ecosystems. Therefore, there is an urgent need to understand
the problem to help IoT users better assess privacy risks they
are facing and policy makers better regulate the IoT industry.

Challenges in IoT data exposure analysis. A large-scale
study of IoT data exposure, however, turns out to be hard,
being impeded by the difficulty in accessing a large number
of IoT devices, which are expensive to get and challenging
to inspect. Hence, prior research focuses on a small set of
IoT devices deployed in the lab environment [51, 63, 79] and
typically utilizes their network traffic to identify the types of
data they transfer over the Internet, and the parties receiving
the data [13, 63, 66, 67]. This requires collecting the IoT
communication traffic, and therefore cannot easily scale. For
example, one of the largest studies on IoT privacy just in-
volves 81 devices [63]. To address the scalability problem,
IoT Inspector [39] made attempts to crowd-source the traf-
fic collection through an application installed willingly by
IoT users in home networks to capture the communication
between IoT devices and the Internet. For privacy concerns
of the research process, IoT Inspector removes sensitive data
and collects only aggregated statistics or traffic/device meta-
data (e.g., remote IP, device labels). Also in the presence of
encrypted IoT traffic, such traffic-based approaches tend to be
less effective. In addition, several prior works proposed assess-
ing IoT data leaks by inspecting available cloud-side IoT apps.
Examples are IoTWatcH [21] and SAINT [23] that analyzed
source code of hundreds of SmartThings SmartApps [70].
These methods, often limited to specific IoT platforms, unfor-



tunately, cannot be applied to the vast majority of devices in
the wild, whose back-end services are essentially black boxes
that are difficult to analyze.

To the best of our knowledge, prior techniques could not
fully enable a large-scale, fine-grained discovery and analysis
of the information gathered and disseminated by IoT devices
and IoT vendors (e.g., analyzing thousands of unique IoT
devices and vendors with their actual data content).

Our work. To address the imperative problem, we present
a novel approach that achieves a large-scale, fine-grained in-
spection of IoT data exposure by analyzing IoT mobile com-
panion apps (mobile apps), which complements prior studies
relying on access to real devices, traffic, and server-side com-
ponents and contributes to gaining a more complete view of
the threats of IoT data exposure in the wild. Our solution
is an automatic, generic framework, called IoTProfiler, that
inspects IoT data exposure utilizing mobile companion apps
of those devices, and further checks whether such exposure
has been done in a responsible way. IoTProfiler leverages two
key observations. O1: First, although IoT devices can directly
transmit user data to their cloud back-ends, many of them
(more than 70% of devices [60, 77]) need to locally connect
to their mobile companion apps (e.g., through Bluetooth, local
area networks) for the purposes of data processing (parsing,
organizing, labeling, etc.) and preliminary analysis (e.g., as-
sociating unique identifiers with the user) before forwarding
them to the cloud. O2: Second, these companion apps are usu-
ally semantic-rich, carrying a variety of textual descriptions
in natural languages (e.g., string constants), which indicate
not only the presence of IoT data but also their semantics
(e.g., heart rates and blood pressure detected by the IoT de-
vices). To this end, we show that it is feasible to statically
analyze IoT companion apps to automatically assess IoT data
collected by IoT devices/vendors and further evaluate the
potential exposure on a large scale.

Also importantly, sensitive IoT data are highly diverse
thanks to a large variety of IoT devices related to health-
care, automotive, security cameras, and home automation and
entertainment, etc. Unlike prior studies [21, 39, 46, 51, 63]
that can only focus on a limited set of data (e.g., persistent
device identifiers and device status), IoTProfiler is capable
of analyzing a wide spectrum of IoT data by leveraging the
known most comprehensive, fine-grained IoT data taxonomy
we constructed, which contains 550 privacy-sensitive IoT data
generalized from IoT-industry standards/protocols, research
papers, and news reports (see Section 3). Using the taxonomy,
our approach recovers diverse semantic-rich IoT data from
mobile companion apps (e.g., sensitive health data such as
lung capacity, heart rates, smoke habits, see Section 6).

Such data-exposure analysis is nontrivial, due to the chal-
lenges in (1) automatically locating the IoT data handled in
companion apps, which are often kept together with the apps’
local data, and (2) understanding the semantics of the data so
as to determine the legitimacy of their collection and sharing.

Our solution leverages the observation that IoT data are usu-
ally handled by certain dedicated code snippets, and the code
snippets contain semantics about the data (e.g., data labels in
the form of constant strings). More specifically, IoTProfiler
first locates IoT-related code snippets by running a text clas-
sification model based on fastText [44], and then identifies
sensitive IoT data from the discovered code snippets using
our IoT data taxonomy. Further, we perform a data-flow anal-
ysis to determine what data are exposed to the Internet, and
whether they are properly disclosed to IoT users.

Evaluation and discoveries. We implemented IoTProfiler
and evaluated its effectiveness, generality, and performance.
This evaluation shows that our approach effectively detects
sensitive IoT data with a 93.8% precision and 83.5% recall on
our validation dataset. Running IoTProfiler on 6,208 IoT com-
panion apps (on Android) from both official and third-party
app markets, we were able to conduct a large-scale IoT data
exposure analysis, which sheds light on the pervasiveness of
the privacy risks today’s IoT devices pose to general users.
These apps cover at least 4,493 unique device vendors, allow-
ing us to gain a more complete view of IoT data exposure
on today’s market. More specifically, 1,973 companion apps
(31.8%), corresponding to at least 1,559 unique IoT vendors,
expose diverse user data from IoT devices to the Internet, with
each app disclosing 5.6 data items on average (e.g., accurate
home address, weight, BMI, apnea count, breath rate, blood
sugar level, etc.). However, we found no evidence that the col-
lection of these data has been properly disclosed, e.g., through
a privacy policy provided by device vendors. For example,
a cigarette holder [17] supposed to keep track of its user’s
smoking frequency is found to stealthily measure the user’s
lung capacity.

Also, our research shows that IoT vendors disseminate user
data broadly without proper disclosure, not just to their own
back-ends, but also to a large number of third parties: 557
(9.0%) companion apps (from 465 IoT vendors) transfer IoT
data to more than 695 unauthorized parties (Section 6.1).
These parties include not only traditional data brokers but
also upstream IoT vendors and health-related platforms. For
example, we have initial evidence that health analytics plat-
forms (e.g., healthlink.cn) connected to health insurance com-
panies may have gathered users’ health-related data, which
can have serious privacy impacts. Further, our study shows
that many devices are involved in cross-region data sharing,
which could violate privacy regulations like GDPR [43]. For
example, smanos [8], a smart alarm system whose vendor is
in Amsterdam, periodically sends data to servers in China.

Contributions. We summarize our contributions as follows:

• New techniques. We developed a suite of new techniques
for the large-scale, fine-grained, semantic-aware analysis of
IoT data exposure without relying on the access to real IoT
devices, their traffic, or IoT back-ends which are typically not
available for third-party assessment.



(a) Device-to-mobile data management (using NFC, Bluetooth, BLE, etc.)

(b) Cloud-based data management (Google Home, Amazon Echo, etc.)

Figure 1: Two typical data management modes in IoT.

• Large-scale study of IoT data exposure. We reported a large
scale study of exposed IoT data on 6,208 IoT companion apps
from 4,493 IoT vendors. Our new findings help to understand
the gravity of the IoT data exposure risk in the wild and
highlight the importance of regulating the data practices of
IoT industry to protect user privacy.

• New taxonomy of sensitive IoT data. IoTProfiler is built on
top of our new taxonomy of sensitive IoT data, which covers
more IoT data types with finer granularity than those studied
in prior research (e.g., [39, 63]). Such a taxonomy contributes
to future IoT research by generalizing the level of privacy and
also better informs policy/law makers and IoT vendors of the
data that need to be protected.

2 Background

Two modes of IoT data management. IoT devices on to-
day’s market typically share the data they collect with their
back-ends or third parties in two ways. First, IoT vendors
often utilize companion apps as an intermediary to process
the data from their devices, before sending them to the clouds
(Figure 1(a)). This data management mode is particularly pop-
ular among the devices with short-range communication (e.g.,
BLE, NFC) only, which tend to leverage the computing power
of mobile phones to manage and transmit data. Note that even
Internet-connected devices often support a peer-to-peer con-
nection (or a relayed connection) with their companion apps,
for transmission of IoT data to their clouds through the apps.
Examples include P2P cameras and devices featured with
local controls (e.g., Philips Hue lights, August locks, Belkin
Wemo, and TP-Link). A recent study [77] shows that even
among the IoT devices with Internet access, 76.3% of them let
data collected at the devices to go through companion apps.

In the meantime, some IoT devices directly transfer their
data to their cloud back-ends. Examples include Amazon
Echo, Google Home, Samsung SmartThings (Figure 1(b)).
Although this communication path does not go through com-
panion apps, such devices tend to forward some data to the
apps for the purposes of device management. For example, an
air conditioner may display room temperature measured by its
sensor in its companion app. Interestingly, such information

could be shared with third parties (see Section 6.1), which
once happens often goes through the companion apps, due to
the convenience in integrating the SDKs from those parties
into the apps. We found in our research that analysis of such
integration can also help understand IoT data exposure.
Scope of our study. In this research, we focus on the IoT
devices that share user data they collect with cloud back-ends
or third parties through their companion apps. We do not
consider the devices uploading all their data through direct
connections with the cloud back-ends, without transmitting
any data to mobile companion apps. On the other hand, we ac-
knowledge that we may miss information exposures through
the direct device-cloud channels and data sharing on the cloud
side: for example, unauthorized transfer of user data by a de-
vice’s cloud to another party. Notably, such data exposure is
difficult to detect and measure from the user side due to the
invisibility of an IoT cloud back-end’s internal operations.
Threat model. Our study primarily focuses on legitimate
IoT vendors and companion apps whose data collection
and sharing practices can lead to unexpected privacy expo-
sure and, thus, legal non-compliance. Although real-world
IoT companion apps may involve code obfuscation (e.g.,
variable-renaming), in practice, common obfuscation tech-
niques/tools, such as ProGurad [55], have little impacts on
our approach IoTProfiler. This is because IoTProfiler only
leverages constant strings in the code to analyze semantics,
whose obfuscation is complicated and costly [33], easily in-
troducing prominent performance overhead [83], bugs and
functionality-disruptions [47]. Thus, constant string obfusca-
tion is rarely adopted by legitimate IoT vendors in the wild
based on our study and prior work [29]. We do not consider
malicious and evasive operations, such as customized logic/-
time bomb and code/data encryption, that are meant to evade
analysis, which pose fundamental challenges for an analysis
at our scale.

3 A Taxonomy of Privacy-Sensitive IoT Data

Given the diversity of IoT devices, our work proposes an IoT
privacy-data taxonomy that covers different categories of IoT
data, with a variety of sensitive data items being used in the
wild. Such a taxonomy is essential towards a fine-grained IoT-
data exposure analysis (see Section 6). It is constructed by
gathering IoT data items that are considered privacy-sensitive
in prior research papers and media reports, and further en-
riched by IoT industry standards/protocols that define IoT
data models. As a distinction from user data concerned about
in prior mobile privacy research [16, 53, 54, 68, 76, 81, 84],
our taxonomy describes IoT data that are obtained from de-
vice sensors (e.g., blood pressure), IoT device operation/usage
(turning on/off a blood pressure monitor), and IoT device
metadata.
Taxonomy construction. Our taxonomy (Table 1) is built



Table 1: Summary of the taxonomy with examples of privacy-sensitive IoT data items

Category Subcategory Identified data items from news reports and research papers

Device Tracking Data Device Identifier device id, device fingerprint id, hardware id, identity id
Network Identifier IP address, mac address, bssid, ssid

Sensor Data

Biometric Data
blood oxygen level, user voice, body weight, blood pressure,
stroke volume, facial image, hand size, palm humidity, kids voice,
walking length, medical search history

Location Data vehicle location, lock location, camera location, drive route, drone address
Environmental Data device/home temperature, street lights, air quality, road surface quality

Device-attached Data

Device Metadata device name, device model, screen resolution, device DPI, paired device,
temperature setting, intensive setting, vibration mode, bluetooth info

Device Usage

camera image, camera video, device usage status, driving speed,
watched/listened channels, watched videos, voice clip, favorite show,
light on/light off, media information, audio recording,
smoke puffs, maps of room, door status

Timing Info smoke time, device usage frequency, watch time, bed time, driving time,
turn on time, at home time, having sex time, light on time, travel time

* We provide the references (research papers and news reports) of each category and data item in our project repository [2].

by inspecting 29 research papers and 54 news reports that
cover disparate privacy threats associated with IoT sensitive
data, ranging from device identifiers to IoT sensor data and
usage data attached to the IoT devices, etc. To collect such
data, we manually inspected research papers published in the
past five years from major security and privacy related venues
(see the full list online [2]), and identified those focusing on
IoT privacy research and their related works. We also used
keywords, such as “IoT privacy”, “smart home privacy”, “IoT
data exposure” and “smart home data exposure”, to query
Google Scholar and Google News to gather relevant papers
and news reports. After that, we asked three domain experts
to review those papers and news reports, annotate privacy-
sensitive IoT data items that users are indeed concerned about,
and determine the categories of those data items. Overall, the
task took them around 60 hours (20 hours for each expert) to
annotate data, with a Cohen’s Kappa coefficient [26] (which
measures both inter- and intra-rater reliability) of 0.92.

Taxonomy enrichment. We leverage data models defined
in IoT industry standards and development documentation
to enrich the above taxonomy with the best possible cover-
age. Our corpus includes the IoT interoperability standards
such as Matter [12] and HomeKit Accessory Protocol [42],
and developer documentation crawled from mainstream IoT
platforms [3, 4, 7, 69], including Tuya, Philips Hue, MiHome,
and openHAB. Notably, this corpus, especially those IoT in-
dustry standards, has defined the functionalities and involved
data of a number of mainstream smart home devices. To
help analyze the developer documents, we adopted a security-
domain name entity recognition (NER) model reported in
XFinder [75] to identify potential IoT data items (i.e., enti-
ties) from the documents. In this step, we extracted 3,510 data
items in forms of short terms and keywords from 3,102 docu-
ment sentences. After that, we manually reviewed those data
items and merged them into corresponding categories in the
taxonomy. In this way, we extended the taxonomy to include
550 sensitive IoT data items, with each subcategory covering
an average of 68 sensitive IoT data items. Note that manual

examination is necessary to maintain the high-quality of our
taxonomy. While the taxonomy is still not comprehensive,
it covers much more sensitive IoT data with finer granular-
ity than prior works [13, 21, 39, 46, 51, 63]. For example,
IoT Inspector [39] mainly focuses on device metadata (e.g.,
device name, device model, mac address), a sub-category in
our taxonomy, and traffic statistics (e.g., bytes sent/received).
Ren et. al [63] discussed device identifiers and a few device
activities (video, power, movement) inferred from network
traffic, while our taxonomy covers much more fine-grained
data items such as driving speed, door status, etc.
Discussion. According to the GDPR Article 4 - Definition [6],
at least the IoT data items under the Device Tracking Data
and Biometric Data (sub)categories of our taxonomy (see
Table 1) are considered to be personal data. Particularly, items
under Device Tracking Data are “general personal data” as
they can be used to uniquely identify a natural person; items
under Biometric Data are considered as “special personal data”
as they represent the physical, physiological or behavioural
characteristics of a natural person. Even though the other data
items might not have been explicitly mentioned by GDPR
or be used to directly identify a person, they may be used
by vendors to better profile a user once linked with a user
ID (e.g., for understand the user’s preference and promote
targeted advertising) and thus considered privacy-sensitive in
our research and prior papers and news articles.

4 Design of IoTProfiler

Motivation, challenges and idea. IoTProfiler aims for a
large-scale understanding of IoT data exposure in the wild,
through automated static analysis of IoT companion apps.
A key challenge, as mentioned earlier, is how to effectively
locate the IoT device data “in-transit” within the app, which
is a necessary step before one can track their exposure. A
naive idea is to rely on a pre-defined list of keywords (e.g.,
“device id”, “username” and “password”), which has been
adopted in prior works to find sensitive data from general



mobiles apps or IoT-device traffic [40, 51, 52, 53]. However,
prior lists of keywords — usually small — do not suffice, not
only for the high diversity of IoT data (e.g., heterogeneous
health data), but also thanks to their contextual dependency.
For example, “start_time” in a companion app could indicate
either the information received from an IoT device (e.g., start
time when a person sleeps) or start time of the app – a non-IoT
data.

1 public class StdiDeviceStatus extends BluetoothEvent {
2 private int deviceId;
3 private boolean a;
4 private int b, c, d;
5 private string pkgName;
6
7 public void getDeviceStatus(byte[] bleData){
8 this.a = (bleData[0] == 1);
9 this.b = getVoltage(bleData[4]);

10 this.c = bleData[5];
11 this.d = bleData[6] & 15;
12 }
13
14 public String updateDevStatus() {
15 String devStatus =
16 "DeviceInfo [deviceId " + this.deviceId +
17 " ,isRunning=" + this.a +
18 ", vibrationMode=" + this.b +
19 ", batteryLevel=" + this.c +
20 ", temperature=" + this.d +
21 ", eventTime=" + Utils.getCurrentTime() +
22 ", packageName=" + this.pkgName +
23 "]";
24 HTTPRequest.send(devStatus);
25 }
26 }

Figure 2: A code snippet from We-Vibe companion app.

Our idea to address this challenge is based upon the obser-
vation that in a typical IoT companion app, there are certain
methods that handle the data transmission from the IoT device
and parse the data before they can be used (e.g., displaying to
the user or transmitting to the cloud). Figure 2 shows a real
example — a code snippet from the companion app of We-
Vibe [45] (a sex toy). Here, the app first gets the raw data from
the BLE-connected device in a byte-array bleData (Line 7).
Then, it parses each data item and saves them to a set of class
fields a, b, c, and d (Line 8-11). Further, when the compan-
ion app transmits the data to the server (Line 14-25), it first
aggregates the data items and labels each of them with a set
of textual descriptions, for example, “vibrationMode” (Line
18, vibration mode of the toy), and “temperature” (Line 20,
temperature of the toy). Such structured and labeled data will
be easy for the server to use.

Such an observation allows us to identify the classes
or methods that handle IoT data received from the IoT
device, by leveraging the “collective semantics” of all
descriptive texts in a method, in particular constant strings,
to determine semantics of the data and their correlation with
IoT. More specifically, in this motivating example, the textual
descriptions in the code can adequately indicate semantics
of the data, although the names of class fields often can be

Figure 3: Overview of IoTProfiler

obfuscated, e.g., a, b, c, and d in Line 8-11 (see discussion of
obfuscation in Section 7). Also interestingly, by looking at
a single text label (e.g., isRunning), it is difficult to tell with
high confidence whether the data in the class are related to
the IoT device. However, when combining all text labels (e.g.,
batteryLevel, vibrationMode, and temperature), we
get a strong indicator that the method (updateDevStatus)
and the corresponding variables (a, b, c, and d) are handling
IoT data.

To understand the generality of the observation (“IoT data
are often clustered for processing”), we randomly sampled
500 IoT companion apps (out of a total of 6,208 IoT com-
panion apps found in the wild, see Section 6) and confirmed
that each app included at least one method that processes a
cluster of IoT data indicated by their textual descriptions (see
Section 4.2). In our research, we designed a semantic-based
learning model to discover such methods from the apps, which
are further analyzed to pinpoint the actual IoT data items and
determine whether the data practices incur privacy risks.
Terminologies. Following are the terminologies used
throughout the paper:
• IoT code block. For an IoT companion app, we con-
sider an IoT code block as a method which includes a
cluster of semantic-meaningful text labels describing infor-
mation related to the IoT device, for example, the method
updateDevStatus() in Figure 2.
• IoT data point. Given an IoT code block, we define each of
the text labels (i.e., constant strings) it includes as an IoT data
point if the text label clearly indicates information related to
the IoT device. In Figure 2, for example, the IoT data points in
the IoT code block updateDevStatus() include text labels
isRunning, batteryLevel, etc. Note that not all text labels
in an IoT code block are necessarily referring to IoT data. For
example, the label “packageName” (Line 24) only represents
the app’s package name.

4.1 Approach Overview

As outlined in Figure 3, IoTProfiler takes IoT companion
apps (on Android) as input and reports whether an app incurs
privacy risks by exposing IoT data to the Internet without
disclosure. IoTProfiler uses two major components:

The first component is an IoT Data Identifier (IDI). IDI
first obtains decompiled app code using Soot [74], and ex-
tracts code blocks (i.e., methods containing text labels) from



the decompiled app code. Then, IDI determines which data
blocks are semantically related to IoT data through a text
classification model (Section 4.2). Afterwards, all text labels
in an identified IoT code block are analyzed, based on their se-
mantic similarities to our IoT data taxonomy, to find out those
that indeed describe the data of an IoT device (Section 4.3).
Taking the code block Line 16-22 in Figure 2 as an example,
IDI will report that all text labels except the one in Line 22
(i.e., packageName) are IoT data points.

The second component is a Leakage Tracker (LT). With
the identified IoT data points, LT checks if the corresponding
IoT data points are exposed to the Internet through a data
flow analysis. Here a key challenge is how to effectively find
all program variables related to a particular IoT data point.
This is beneficial since multiple variables across nearby IoT
code blocks may represent the same IoT data point, and find-
ing these variables would improve the coverage of the data
flow analysis. To overcome the challenge, LT leverages a
semantic-driven approach to relate IoT data points to poten-
tially multiple program variables that can be found in the
code (Section 4.4). LT then checks if any of those variables
is exposed through a privacy risk analysis (Section 4.5), i.e.,
determining whether data collection and sharing are disclosed
in IoT-related privacy policies.

4.2 Locating IoT Code Blocks
As mentioned earlier, the first step to identify IoT data points
is locating the IoT code blocks from the decompiled app code.
To this end, IDI extracts text labels for all code blocks, and
uses a binary text classifier to tell whether a code block is IoT
related.
Collecting (non-)IoT code blocks for training. We ran-
domly sampled 500 IoT companion apps from our app set
(see Section 6), and extracted a set of candidate IoT code
blocks based on IoT related keywords such as “bluetooth”,
“battery”. After manual inspection of these candidates, we
finally labeled 962 IoT code blocks for model training. In the
meantime, we labeled an equivalent number (962) of non-IoT
code blocks from these apps, which are further used as neg-
ative samples for model training. The non-IoT code blocks
only perform app functions irrelevant to IoT devices, for ex-
ample, loading and parsing the user profile (as a JSON object)
from the remote server. The text labels in these two sets are
used as a balanced training dataset to build the IoT code block
classifier.
Text classification. For each code block in the app, IDI ex-
tracts constant strings appearing in the code block as semantic
text labels. These text labels will first go through the standard
text pre-processing (e.g., word splitting and non-character
symbol removal) for classification.

In our research, IDI employs fastText [44], a state-of-the-
art word embedding model based on neural network to learn
and identify IoT code blocks through the text label semantics.

More specifically, we first send the code blocks extracted from
the aforementioned 500 IoT apps to a domain-specific word-
embedding model based upon fastText, following the stan-
dard procedure in its tutorial [9]. Then, with this embedding
model, IoTProfiler trains an SVM classifier and performs su-
pervised learning over the labelled corpus (i.e., the 1,924 IoT
and non-IoT code blocks) for IoT code block identification.
Particularly, given a future unknown code block, text labels
(words) it contains are transformed into numerical embed-
dings by fastText, which are further fed to the SVM classifier
to determine whether it is an IoT/non-IoT code block.

Unlike other embedding models such as word2vec [50]
which use the word-level n-gram tokenization, fastText uses
the character-level n-gram tokenization instead to generate
text embeddings. In this way, it can provide better representa-
tions for misspelled words, rare words and words that do not
exist in the training corpus [22]. This is particularly helpful in
our task, as the namings of same subjects in program code may
change from app to app by different developers. For example,
the two strings “body_temperature” and “body_temp” in
different apps have a similar meaning, but the latter might
even not appear in any vocabulary set. Our further evaluation
by comparing different word embedding models (word2vec
and BERT [28]) showed that fastText indeed performs better
(see Section 5.2).

Enriching semantics of code blocks. Although most code
blocks contain a sufficient amount of text labels reflecting
their semantics, in some cases, the number of valid text labels
in the code block could be limited. This often happens when
a code block does not have constant strings, but only includes
heavily obfuscated class member variables (e.g., a variable
named aa). As a result, the coverage of IoTProfiler could be
reduced due to the lack of text labels in such code blocks.
To address the problem, we come up with a set of heuristics
to enrich the semantics by correlating scattered text labels
to these code blocks. Taking Figure 4 as an example, the
member variable, this.a, is included in a code block, but
is obfuscated and do not convey any meaning. To enrich the
semantics, we analyze all methods in the class and find the
text labels that relate to the member variable. In this case, the
text label “day_step:” is correlated to the code block since
it describes the this.a field (Line 4). Through this process,
the code blocks with obfuscated fields can be better correlated
with semantic descriptions.

1 package com.huawei.health.d;
2 public class f {
3 public boolean b() {
4 Log.e("Step_Report", "day step:" + this.a);
5 }
6 }

Figure 4: A code block in com.huawei.health app.



4.3 Identifying IoT Data Points

The identified IoT code blocks may include not only text la-
bels for IoT data points, but also those describing an app’s in-
ternal states (e.g., “error_msg”, “response”). To find those
indeed related to IoT devices, we designed a taxonomy guided
approach in which IDI compares the similarity between a
given text label discovered from an IoT code block and each
data item in our taxonomy (Section 3) as follows.
Semantic similarity. We use a state-of-the-art and best avail-
able sentence embedding model, Sentence-BERT [62], to
measure the semantic textual similarity. The model takes sen-
tences (short terms in our case) as input and outputs its vector
representations so the sentences with similar meanings are
close in the vector space. Specifically, we select a pre-trained
sentence embedding model with the highest score on STS-
benchmark (i.e., stsb-roberta-large) in our task. This model
was trained on large open-domain corpora (i.e., the Stanford
Natural Language Inference (SNLI) corpus) and optimized
for computing semantic textual similarity.

To determine whether a data point indeed relates to a taxon-
omy data item, we need a similarity threshold. Such a thresh-
old is found using a ground truth dataset extracted from the
962 training IoT code blocks in Section 4.2. From these IoT
code blocks, we collected 9,977 text labels, and 1,861 of them
are unique IoT labels. In our research, we searched between
0 and 1 using a step 0.01 on the dataset for the cut-off that de-
termines the relation between a text label and data items, and
further evaluated the precision and recall under each cut-off.
Our experiments show that a cut-off of 0.81 yields an optimal
result, with a precision of 93.6% and recall of 81.5% (more
details in Figure 9), which was therefore chosen as the sim-
ilarity threshold. Note that with this threshold, a given data
point could match multiple taxonomy entries. In this case, we
use the entry with the highest similar score.
Handling local app data. Some data items in our taxonomy
describe both sensitive data related to IoT devices and those
solely used by mobile apps (called local app data). A promi-
nent example is location-related data items, such as latitude
and longitude. Therefore, looking up the taxonomy for the
text labels in a companion app may introduce false positives,
i.e., reporting the local data as IoT data points.

IoTProfiler takes a few measures to eliminate such false
positives. First, when searching for code blocks from an IoT
companion app, our approach focuses on the app developer’s
code, which is supposed to be mostly related to device man-
agement, as identified from the app’s package names. This
helps remove a significant amount of data points in third-party
libraries that are irrelevant to IoT devices, such as location
data collected by mobile advertising/analytics libraries. Sec-
ond, IoTProfiler leverages the fastText model to detect IoT
code blocks with clustered semantics. This ensures that a
code block will not be labeled IoT-relevant just due to the
presence of an individual data point of interest, so the data

like latitude need to coexist with other identified data points
(according to our taxonomy) to be considered as IoT data. No-
tably, based on a thorough evaluation (Section 5.2) on 2,659
IoT data points labeled by IoTProfiler, 2,495 of them (93.8%)
are indeed IoT data (from IoT-devices or their usage statistics)
and local app data, including mobile sensor data returned by
Android APIs, are typically not included in the results.

4.4 Finding IoT-Related Program Variables
With the identified IoT data points, the Leakage Tracker (LT)
then finds out the corresponding variables in the code that
store the values of the data points. Section 5.3 will show that
these variables are used as taint sources to check whether the
IoT data are exposed to the Internet.
Identifying the variables inside IoT code blocks. In gen-
eral cases, an IoT data point comes from a textual string
(i.e., constant string, see Figure 2) that describes a vari-
able within the app, e.g., the key value in the form of
a constant string describing the value variable in a key-
value store such as Map and JSON object. To find the
variable that stores the value of such an IoT data point,
we inspect the data operation statements involving the IoT
data point. For example, in the statement that operates
a JSON object jsonObject.put(“walk_distance”, a),
“walk_distance” is the IoT data point we identified and a is
the variable we found that stores its value.
Identifying the variables across the app. Outside IoT
code blocks, a particular app could have multiple copies
or references of an IoT data across the app, for which
we also aim to track exposure. Compared to an IoT code
block which may parse/process a cluster of IoT data and
put them in a dataset, another method/class in the app may
reference and use just one (or few) of the IoT data (e.g.,
jsonObject.get(“walk_distance”)). Note that IoTPro-
filer identifies an IoT block based on its clustered IoT seman-
tics (see Section 4.2), so an individual reference of an IoT
data in a method may not be identified and thus tracked for
privacy exposure. Even more challenging is, those individual
references of the IoT data may use text labels (e.g., variable
names) different from what we identified in the IoT code
blocks, making it ineffective to simply search the IoT data
point across the app. For example, for the same IoT data, the
label “battery_level” is used to present the data to the user
interface, while the label “voltage_value” is used for device
monitoring.

To address the problems, we developed a simple yet
effective approach. In particular, given an IoT data
point we have identified from IoT code blocks, IoT-
Profiler searches and maintains a set of its alias labels
used in the particular app, based on which we search
those variables related to the aliases. For instance,
given an identified IoT data point “battery_level”
with its associated variable dev.battery_level,



the statement intent.putExtra(“voltage_val”,
dev.battery_level) allows us to link “battery_level”
to its alias “voltage_val”, which could then be used to
further relate to more variables (based on data operation
statements, same as how IoT data points are related to
variables discussed above) across the particular app. Note that
the aliases are only used within the same app. Therefore, this
approach is not affected by choices of different developers or
apps.

4.5 Detecting IoT Data Exposure

Leakage Tracker relies on static taint analysis to identify
IoT data exposures. Specifically, we use the IoT variables
identified in Section 4.4 as taint sources and use networking
APIs as sinks. Then we leverage FlowDroid [20] to report
source-sink connections that expose IoT data points to the
Internet. For any exposed data point, we check if its exposure
is clearly stated in the device vendors’ privacy policies — the
current de facto and de jure standard for the service provider
to communicate to users its applicable privacy practices [15,
16, 48, 85].

To assess whether device vendors collect IoT data without
disclosure, we collect their privacy policies from multiple
sources, i.e., on the app store pages, on the device vendor
websites, and in the app resources (under file path res/ and
assets/ ). In total, we gathered 4,182 valid privacy policy pages
for 3,686 companion apps from the above sources in August
2020 (each app and its privacy policies were collected at the
same time). We then preprocess the pages with an HTML
parser [14] to convert them to plaintext format. After that,
we detect the language of privacy policy paragraphs with
langdetect [27]. Those non-English paragraphs are then trans-
lated into English with Google Translate [35] before being
fed into PolicyLint. According to previous studies, Google
Translate achieves an overall accuracy of 82.5% for differ-
ent languages including Chinese, Korean, etc [71]. In our
research, we further verified that the translation was accurate
by manually sampling and checking 200 translated policy
paragraphs. Last, we adopt PolicyLint [15] (a state-of-the-
art tool for privacy policy analysis) to extract data collecting
and sharing related statements. These statements are mod-
eled as (actor, action, data point, entity) tuples,
which represent the data practices of “We [actor] collect
[action] your email address [data point] with advertisers
[entity].”

We compare the output of FlowDroid (data exposure from
the app) with the tuples collected from privacy policies (i.e.,
disclosed data collection), and report a privacy risk if any of
the following conditions is met: 1) an exposed data point does
not show up in its device’s privacy policy, 2) the privacy pol-
icy explicitly describes that an exposed data point will not be
collected, or 3) an exposed data point is shared to a third party
by an app while the privacy policies indicate that the data

point (or any data) will not be shared. A key challenge here is
that automatically checking their flow-to-policy consistency
is non-trivial, due to the inconsistent descriptions between
the IoT data points found in the apps and those mentioned in
privacy policies. Specifically, a substantial amount of IoT data
points found in the apps are related to low-level device oper-
ations unique to the IoT context (e.g., door_opened), while
such data could be described with more general terms in pri-
vacy policies (e.g., “we may collect certain device usage
data from your device” [11]). To address the challenge, we
first map each exposed data d in the app to a data item d_t
in our taxonomy (see the semantic-based approach in Sec-
tion 4.3). If the collection of either d_t or its hypernym (i.e.,
the category/subcategory name recorded in the taxonomy, see
Table 1) is disclosed in the privacy policies, we consider it
as a proper, accountable disclosure. Otherwise, IoTProfiler
reports a privacy risk with d.
Discussion. As required by privacy regulations [32] and pub-
lic platforms (e.g., Google Play [1] and Apple App Store [41]),
privacy policies are usually posted publicly on the Web, and
used as a standard method to disclose the collection/usage
of private user data. In addition to that, the apps and device
vendors we studied may use a different disclosure method,
i.e., in-app disclosure. However, this method is just a comple-
mentary way to seek user consent based upon online privacy
policies, rather than a substitute for privacy policies [1]. There-
fore, we consider using privacy policies as a comprehensive
source for validating proper disclosure of IoT data.

5 Evaluation

In this section, we report our evaluation on IoTProfiler, in-
cluding the effectiveness of its end-to-end execution and indi-
vidual components.

5.1 Experiment Datasets

• IoT companion apps collected in the wild (denoted
as Dcp). In our research, we collected a set of IoT mobile
companion apps from public app markets. Specifically, we
crawled both Google Play [34], third-party websites (i.e., AP-
KPure [18] and 360 Store [10]) to download their most up-
to-date apps in August 2020. From each source, we searched
with a list of IoT-related keywords, such as smart home,
thermostat, and smart plug, and crawled the corresponding
apps from their websites. We used app package name (e.g.,
com.xiaomi.smarthome) as the unique identifier and removed
redundant ones to make sure that the dataset does not include
overlapped apps from different sources. To further ensure
that the collected apps are indeed relevant to IoT devices,
we asked two researchers to manually inspect their names,
descriptions, and drop the app if anyone does not think that it
is IoT-related.



In total, 6,208 IoT companion apps were collected from a
total of 9,995 candidates (with 3,331 non-IoT apps, and 456
packed apps [30]). Among the IoT companion apps, 74.6% of
them are from Google Play, 11.4% of them are from APKPure
and 14.0% of them are from the 360 Store. While our crawler
targeted the apps available in U.S. and China, we noticed that
the collected IoT companion apps are actually available in
most other regions, with each app covering an average of 63
locales (or regions). The average app size is 15.7MB (ranging
from 16KB to 133MB). By checking the developer name and
supporting websites of the apps, we found that our dataset
covers at least 4,493 unique IoT vendors. These apps are
associated with various types of IoT devices such as smart
lights and controls, home security systems, and health-related
devices.
• Ground-truth dataset (denoted as Dgt). We randomly
selected 60 apps from Dcp as a ground truth set: we had
two researchers manually identify the IoT code blocks and
data points within these apps independently. The Cohen’s
Kappa [26] value for the labeled IoT code blocks and data
points are 0.95 and 0.87, respectively. The two researchers
resolved their disagreement by onsite discussion, which leads
to the identification of 852 IoT code blocks and 10,409 data
points (2,987 IoT data points and 7,422 non-IoT data points)
from these apps.

5.2 Effectiveness of IoT Data Identifier (IDI)

Effectiveness of IoT code block identification. IDI relies on
a fastText embedding model and an SVM classifier to identify
IoT code blocks. Overall, IDI achieves 94.5% precision and
94.5% recall over the training dataset. Using our selected clas-
sifier, IDI effectively identified 775 IoT code blocks (91.0%
recall), with only 41 false positives (95.0% precision), on
the Dgt dataset. More specifically, we first trained a fastText
model to generate embeddings for the words in our labelled
code blocks1. Then we trained an SVM classifier using the
manually labelled code blocks – the 1,924 equal number of
IoT and non-IoT code blocks (elaborated in Section 4.2). To
get the optimum classification results, we carefully tuned the
parameters of the two models using grid search. Particularly,
the fastText model was trained in “skipgram” mode, with a
learning rate of 0.5 and epochs = 5. The vocabulary size is
12,059 and the number of dimensions is 100. The SVM model
is with an rbf kernel, and gamma = 0.01.

In addition to fastText, we also tried two other embedding
models, i.e., word2vec and BERT, both of which are widely
adopted word embedding models. We trained the models
on the same corpus as the one used for the fastText model,
and fine-tuned their corresponding SVM classifiers to get the
optimum results in each setting. Lastly, we followed the 5-
fold cross-validation procedure over the labeled dataset set to

1We trained our own embedding model instead of using pre-trained mod-
els because they often fail to cover words in programs.

evaluate the classification results for each model. We leave
more details about such embedding models in Appendix A.

Table 2: Using different classifiers for IoT code block identi-
fication.

Classifier Precision Recall F-1 Score Training Time
word2vec + SVM 91.8% 87% 89.3% 7s

BERT + SVM 94.1% 82.2% 87.7% 230s
fastText + SVM 94.5% 94.5% 94.5% 3s

Table 2 shows the average results for classifiers with dif-
ferent embedding models. As can be seen, the SVM classifier
with fastText embeddings performs better than other alterna-
tives in terms of the overall F1-score.
Effectiveness of IoT data point identification. We compare
the ground truth in Dgt with the IoT data points identified
by IDI, and report the number of true positives (TP, 2,495),
false positives (FP, 164), true negatives (TN, 7,258) and false
negatives (FN, 492). Therefore, IDI achieves 93.8% precision
and 83.5% recall for apps in Dgt . Our further inspection shows
that almost all false positives are caused by the inaccurate
mappings between text labels and the IoT taxonomy. For
example, the “initCalled” label shows whether an app class
has been initialized. However, when it appears in an IoT
code block, IDI incorrectly identified the label as an IoT data
point since it shares a high semantic similarity (87.2%) with
“opened at” in the taxonomy. Such false positives can be
eliminated by using more specific data items in the taxonomy
or introducing a more effective mapping method. We also
observe that 68 false positive data points fall in the “location
data” subcategory in the taxonomy. But in fact, the data points
are from GPS sensor of the mobile device, which are returned
by Android APIs, rather than an IoT device (we did not notice
any other mobile sensor data in the identified IoT data points).
Besides, although we have gathered IoT data points from a
large corpus technical reports and IoT documentation, our
IoT taxonomy is by no means exhaustive. Thus, IDI missed
492 IoT-related data points in Dgt , e.g., “drink cycle” that
represents a previous unseen usage data of a smart water
bottle.

To better understand the distribution of false positives and
false negatives among each app of the Dgt dataset, we also
report the false positives and false negatives within each app.
This evaluation metric answers the important question of
how effective can IDI identify the IoT data for a given IoT
companion app. Specifically, we calculate the precision and
recall of each app by comparing the ground truth with the
identified IoT data points. The results is shown in Figure 8 of
Appendix. Given each app, IDI achieves an average precision
of 94.5% and a recall of 85.1%.

In addition, we evaluated IDI without using alias labels
to identify IoT variables. Compared to full IDI, this baseline
approach reported 46.0% less variables that contain IoT data
points, confirming that the apps are indeed using different
variables for the same IoT data. This resulted in 54.7% less



data exposure reports since the IoT variables are dispensable
inputs to the IoT data exposure analysis.

5.3 Overall Effectiveness

Evaluation of false alarms on Dgt . IoTProfiler reported that
447 IoT data points are transmitted over the Internet by apps
in Dgt . After checking these data points against privacy poli-
cies, IoTProfiler identified that 56 data points are disclosed
in the privacy policies, and raised alarms for 391 data points
in 23 apps. Among the 391 alarms, we confirmed 26 false
positives (93.4% precision). Most of the false positives (24)
are caused by IDI that identifies some non-IoT data points
as IoT data points (see Section 5.2). In the remaining alarms,
IoTProfiler failed to match the data points to the related terms
in privacy policies using semantic analysis. An example is
the bike.cobi.app app: the app exposes an IoT data point
“distance” (i.e., scheduled cycling distance of the user) to the
Internet, while discloses the collection of a seemingly differ-
ent term “planned km” in its privacy policy. Note that in this
experiment, we were able to find privacy policies for 39 of the
apps in Dgt . Among these apps, only seven apps disclosed the
collection of some IoT data, while 14 apps did not disclose the
collection of any specific data point and 18 apps only focused
on the mobile/website data.

We were not able to discuss the recall of IoTProfiler due
to the lack of ground truth, i.e., how many IoT data points
are leaked without being detected by LT. However, the tool
we adopted in LT for data flow analysis, i.e., FlowDroid with
IccTA, is still the state-of-the-art solution that achieves a bet-
ter precision than other tools such as Amandroid [78] and
DroidSafe [38], and a comparable recall at 76% to 90% on
different benchmarks [19, 58, 78]. As we will show in the
following section, FlowDroid indeed allows us to identify
many data exposure risks in real devices.
Dynamic validation with real IoT devices. We performed
dynamic validation to inspect whether the data items labeled
by IoTProfiler are indeed exposed to the Internet. For this
purpose, we purchased 10 IoT devices (actively being used
and available in the market) that are reported to expose at
least three IoT data items from Dcp. We report our dynamic
analysis results in Table 3. Specifically, we performed as many
device operations as possible in the companion apps, and
inspected the apps’ runtime traffic2. Among the reported 97
data items by IoTProfiler, 77 (72.2%) of them are confirmed
to be exposed. Note that this does not mean that the rest 20
data items are false negatives of IoTProfiler. For example, we
observed that IoT devices often implement custom encryption
algorithms, whose data exposure can not be confirmed due
to the encrypted network traffic. Besides, the exposure of
some IoT data items can be triggered only under specific

2We decrypted HTTPS traffic by installing a root certificate to the test
device.

conditions such as IoT device crashes, which may prevent us
from observing data leaks in a dynamic experiment.

Table 3: Dynamic analysis over 10 real IoT devices.

Device Name App Package Name # Confirmed/
Reported

RENPHO body scale com.renpho 3/5 (60.0%)
Kankun smart plug com.kankunit.smartplugcronus 7/10 (70.0%)
Yi home camera com.ants360.yicamera 12/17 (70.6%)
LIVALL smart helmet com.livallsports 2/3 (66.7%)
PETKIT pet feeder com.petkit.android 12/17 (70.5%)
Lexin Smart Band com.lifesense.LSWearable.intl 10/11 (90.9%)
Yeelight smart bulb com.yeelight.cherry 6/8 (75.0%)
YUNMAI smart scale com.yunmai.scaleen 7/11 (63.6%)
ASUS router com.asus.aihome.profile 6/8 (75.0%)

Total 70/97 (72.2%)

5.4 Performance Overhead
We use the dataset Dcp to evaluate the performance of IoTPro-
filer on one workstation with Red Hat Linux with an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz and 16 GB memory. The
overhead mainly focuses on two parts: (1) pre-processing the
app and using semantic analysis to locate interesting IoT data,
(2) data-flow analysis to detect IoT data exposure. Our eval-
uation shows that, for each app, IoTProfiler takes only 22.2
seconds on average for identifying IoT data, with an average
of 169.6 seconds for detecting and reporting IoT data expo-
sures. Overall, IoTProfiler spent a total of 330.7 hours, with
an average of 3.2 minutes for processing each app. Among
all apps in Dcp, 168 (2.7%) could not be successfully ana-
lyzed, either due to a time-out or memory running out issue in
FlowDroid [20]. The result shows IoTProfiler can effectively
process a large number of apps.

6 Measurement

6.1 IoT Data Exposure in the Wild

Landscape. Our study shows that IoT data exposure is per-
vasive in the wild (see Table 4). In total, IoTProfiler identified
50,667 IoT code blocks and 174,943 IoT data points from
5,795 apps (93.3% out of 6,208 apps in Dcp). Among these
apps, 1,973 apps (31.8%) from at least 1,559 unique device
vendors are found to collect sensitive IoT data without proper
disclosure, and each app exposes 5.6 data items on average.
This result indicates that a significant portion of IoT devices
on the market endangers user privacy for the lack of data
transparency. Also seriously, we observed that 557 (9.0%)
apps share IoT data with third parties, and 425 (6.8%) apps
use clear-text transmission (although this bad practice has
been extensively discussed [40, 73]).

A comparison of app stores shows that 47.5% apps from
the Chinese store (i.e., 360 Store) inappropriately exposed IoT
data, while the ratio for US store is only 29.2%. We believe
the main cause of the difference is that the Chinese store do



not implement similar levels of privacy protections (e.g., not
requiring privacy policies on the app store [56]) as the US
store. Another notable finding is that there are significantly
larger portion of apps in the Chinese store than in the US
store that deliver IoT data via insecure transmission (15.6%
v.s. 5.4%) and send the data to third parties (16.2% v.s. 7.8%).
This finding is aligned with other data privacy studies [57, 80],
and confirmed the serious privacy situation of IoT users in
the Chinese market.
Exposed contents. As shown in Table 4, there are 17.4%
apps that expose device tracking data, with each app having
1.9 unique data items (see row-3). In particular, 4.7% of the
apps the device tracking data to third parties. Note that while
the scale of data exposure is less prevalent than the leaks of
personal data (e.g., 12.9% apps leak gender info as shown in
previous research [64], such practice can have serious privacy
implications [6, 59] as it allows third-party trackers to profile
a device owner’s activities by associating their IoT data to the
device tracking data.

We also found that 19.7% of apps expose the timing data
of IoT devices. Specifically, as shown in Table 5, 348 (5.6%)
apps collect the start/end time and 191 (3.1%) apps col-
lect the duration data, which indicates the time schedule
of specific activities of the user, such as smoking, sleep, and
sexual activities. Further, there are 11.5% apps that expose
IoT sensor data. Prominent examples of such data are body
weight which is exposed by 177 apps, and temperature
value exposed by 92 apps.

In addition, we noticed that the US and Chinese stores ex-
pose a very similar set of IoT data items (see the top identified
data items in Table 5), meaning the stores are not targeting
specific IoT data items. However, the apps from the Chinese
store are indeed more likely to expose the data items, e.g., the
data items such as device id, wifi password, and start/end time
are over twice as likely to be exposed by Chinese apps.
Data exposure in different categories of IoT devices. We
studied the IoT devices in 25 most popular categories as re-
ported by iotlineup.com [5] and analyzed data exposure across
these categories. Specifically, we collected keywords for each
device category (e.g., "smart bulb" for Indoor Lighting) and
then classified the apps into the categories by matching key-
words in app descriptions. This allows us to report privacy
risk for different device categories. As can be seen in Figure 5,
the apps related to Smoke/CO Sensors, Remote Controls and
Sleep Trackers are most likely to expose IoT data (with a pos-
sibility ranging from 61.6% to 81.6%), while only 3.0% of
Toys apps and 20.4% of the Automotive apps disclose sensitive
IoT data. Taking a closer look at those apps and related IoT
devices, we found that unlike other companion apps, the Toys
and Automotive apps are mostly controllers for smart toys
and vehicles that are expected to work in short range, e.g., via
Bluetooth, without Internet access. We also noticed that Smart
TVs and Residential HVAC Systems expose the most number
of IoT data items. An example is the Midea Air Conditioner

app that collects over 20 distinctive data items, such as appli-
ance information and user activities, to *.appsmb.com. It is
worth mentioning that we did not notice a major difference
between the devices in the Chinese and US markets, in terms
of which device type exposes the most/least amount of IoT
data.
Data exposure based on device popularity. We grouped
IoT devices based on their companion apps’ number of in-
stalls (an indicator for device popularity), and evaluated how
likely IoT devices of different popularity would expose IoT
data. Our findings are surprising: there is an apparent pos-
itive correlation between device popularity and likelihood
of data exposure, as illustrated by the dash line in Figure 6.
Particularly, 41.8% of the devices in the most popular group
(i.e., >500K installs) improperly expose IoT data through the
companion apps, while the percentage for the least popular
group (i.e., <1K) is only 27.8%). We randomly sampled ten
devices from each of the two groups for manual inspection.
Not surprisingly, the devices in the most popular group are
mainly from large vendors, such as Samsung and ASUS, and
they all have a privacy policy that notes the collection of some
IoT data items. However, there are still three apps that missed
certain data items (e.g., timing data and device status) in their
privacy policies. In the least popular group, while these de-
vices often handle no less data than more popular devices,
most of them (8/10) are not found to share the data to any
cloud back-ends, probably for the lack of resources to support
cloud services. This experiment likely suggests that compared
to the most popular devices, IoT devices from smaller vendors
are more likely to process user data locally, posing a lower
privacy risk.

We observed that the US and Chinese stores share a similar
correlation between the device popularity and the likelihood
of improper data exposure. However, there is a significant
difference in the distribution of apps in the popularity groups:
only 28.6% apps in the Chinese store are installed >1K times,
while the percentage for the US store is 62%. Therefore,
although only a smaller percentage of apps in the US store
will expose IoT data, the apps still have a high potential to
affect a large number of users.
Data sharing with third parties. For the reported data expo-
sure, we first gather URL domains that receive IoT data, and
identify which ones are third-party domains by comparing
them to the app package names. Our study shows that 16.2%
apps from the Chinese store expose IoT data items to third
party domains, over twice as high as the apps from the US
stores (7.6%). We report where the third parties are located.
In particular, we check the DNS information of the third-party
domains found in the code, and leverage ipvigilante.com
to identify the related countries. In total, we were able to
find country information for 588 out of 695 third-party do-
mains. We use the same method to identify the countries of
app developers, and plot the cross-country data flows from
app developers to third parties in Figure 7. We observed that



Table 4: Overall leakage statistics in Dcp.

App Store Data Type
Exposure w/o Disclosure Insecure Transmission Share to Third Party Total
# Items # Apps # Items # Apps # Items # Apps # Items # Appsper App per App per App per App

Any Store Device Tracking Data
Device Identifier 1.2 535 (8.6%) 1.2 96 (1.5%) 1.3 137 (2.2%) 1.2 568 (9.1%)
Network Identifier 1.8 823 (13.3%) 1.6 130 (2.1%) 1.6 208 (3.4%) 1.8 833 (13.4%)
Subtotal 1.9 1,078 (17.4%) 1.6 197 (3.2%) 1.7 292 (4.7%) 2 1,102 (17.8%)

Any Store Sensor Data

Biometric Data 2.1 278 (4.5%) 1.8 76 (1.2%) 1.8 82 (1.3%) 2.1 285 (4.6%)
Location Data 1.9 290 (4.7%) 1.9 73 (1.2%) 1.9 83 (1.3%) 1.9 318 (5.1%)
Environmental Data 1.6 287 (4.6%) 1.6 60 (1.0%) 1.5 78 (1.3%) 1.6 287 (4.6%)
Subtotal 2.3 711 (11.5%) 2.2 172 (2.8%) 2.1 199 (3.2%) 2.3 735 (11.8%)

Any Store Device Attached Data

Device Metadata 1.9 841 (13.5%) 1.7 142 (2.3%) 1.8 223 (3.6%) 1.9 860 (13.9%)
Device Usage and Status 2.4 1,128 (18.2%) 2.1 218 (3.5%) 2.1 288 (4.6%) 2.4 1,177 (19.0%)
Timing Data 2.6 1,225 (19.7%) 2.3 243 (3.9%) 2.2 311 (5.0%) 2.6 1,238 (19.9%)
Subtotal 4.3 1,722 (27.7%) 3.6 350 (5.6%) 3.5 476 (7.7%) 4.4 1,742 (28.1%)

US Store
Any Data Type

5.5 1,560 (29.2%) 4.6 289 (5.4%) 4.6 416 (7.8%) 5.7 1,579 (29.6%)
Chinese Store 6.2 413 (47.5%) 4.5 136 (15.6%) 4.8 141 (16.2%) 6.3 413 (47.5%)

Any Store 5.6 1,973 (31.8%) 4.6 425 (6.8%) 4.7 557 (9.0%) 5.8 1,992 (32.1%)

Table 5: Top identified data objects with privacy risks.

Data Type Data Item # Apps
US Store Chinese Store

Device Tracking Data

device id 318 (6.0%) 113 (13.0%)
wifi password 247 (4.6%) 110 (12.6%)
mac address 154 (2.9%) 36 (4.1%)
ssid 154 (2.9%) 32 (3.7%)

Sensor Data

body weight 135 (2.5%) 42 (4.8%)
temperature 69 (1.3%) 23 (2.6%)
altitude 39 (0.7%) 21 (2.4%)
humidity 37 (0.7%) 9 (1.0%)

Device Attached Data

start/end time 251 (4.7%) 97 (11.1%)
model name 244 (4.6%) 62 (7.1%)
device name 210 (3.9%) 71 (8.2%)
duration 162 (3.0%) 29 (3.3%)

cross-country data transfer is very common, with the United
States and China being two major data hubs that receive most
IoT data from other regions, followed by Canada, France,
Germany, and South Korea.

Further, Table 6 shows the top 10 third parties that receive
data from the most number of companion apps. On top the
list are IoT B2B suppliers and solution providers. Tuya [69],
as an example, is such an IoT B2B supplier that produces
physical IoT devices and companion apps on behalf of IoT
device vendors according to their hardware/software require-
ments. Although accelerated device creation, this workflow
indeed poses new privacy risks: IoT device users often have
an illusion that only the device vendors have access to their
data, but in fact any upstream vendors may collect their data.
As another example, a smart mattress sold by an Australian
company (AH Beard Pty Ltd) to local customers is found to
send various sleep-related data to a company in China (i.e.,
*.sleepace.net). For these cases, the users should be alerted
for the risks of cross-region data sharing, considering privacy
regulations such as GDPR that restricts such kind of data
practices [43].
Privacy policies of IoT vendors. We found that about a third
(678) of the 1,973 apps that expose sensitive IoT data fail to
provide a valid privacy policy. Specifically, up to 79.9% of
the apps from Chinese market (i.e., 360 Store) do not have
privacy policies, compared to only 17.5% on Google Play.
This is likely because Chinese market put less restrictions on
app/device privacy compliance. Even in the privacy policies

Table 6: Top 10 third-party domains that collect IoT data.

3P Domain # Apps Country Domain type
*.tuya.com 69 China IoT B2B Supplier
*.ys7.com 14 China IoT B2B Supplier
*.keeprapid.com 14 China IoT Solution Provider
*.dropcam.com 11 United States IoT Manufacturer
*.mykronoz.com 9 Switzerland IoT Manufacturer
*.fitbit.com 7 United States Connected Health Platform
*.facebook.com 5 United States Social Networking Service
*.strava.com 5 United States IoT Data Integration Platform
*.sleepace.net 3 China IoT Solution Provider
*.anlian.co 3 China IoT Manufacturer

we found, there are a few alarming problems that may prevent
them from providing proper data transparency to device users.

First, IoT vendors may provide different types of devices
that collect distinctive IoT data points. An example is D-Link
that provides WiFi routers, smart cameras, and smoke sensors.
For better privacy disclosure, the vendors are expected to have
dedicated privacy policies for each type of devices. However,
our study on the 347 vendors that own at least two types of
devices shows that almost all vendors use generic policies
to cover different devices rather than providing device spe-
cific policies. This finding reveals that the privacy policies in
IoT context are likely too coarse-grained to provide reliable
disclosure to the users.

Also surprisingly, we noticed that privacy policies are often
shared by different IoT vendors. Specifically, we clustered
4,182 privacy policies based on their document similarity
(with the documents’ TD-IDF features [65]), and identified
122 clusters of similar privacy policies. We found that some
clusters indeed correspond to different device vendors. An
example is a P2P camera (x.p2p.cam), which although is not
built on Tuya [69] — an IoT development platform through
which many IoT device manufacturers easily deploy OEM de-
vices and companion apps, uses Tuya privacy policy without
any modification. Also concerning is that, some IoT vendors
that leverage Tuya, such as Enerwave WiFi Switch, also
share the generic privacy policy of Tuya. Such findings high-
light the need for an effective approach to inspect the accuracy
and completeness of IoT related privacy policies.



Figure 5: IoT data exposure for
different device types.

Figure 6: IoT data exposure for
different device popularity.

Figure 7: Cross-region IoT data flows.

6.2 Case Studies

Below we elaborate two noteworthy cases discovered in the
research.
Health monitoring devices. Health monitoring devices,
such as smart bracelets and sleep trackers, have gained great
popularity in recent years. These devices are capable of col-
lecting highly-sensitive health data as medical devices, and
therefore may lead to serious privacy risks. To give a few
examples, a smart bracelet called 37º, whose companion app
has over 140K downloads. On the one hand, the compan-
ion app would upload any possible data, such as user heart
rate, blood pressure and sleep start time, to its own server
https://d37service.37bit.net:8443. But on the other hand, the
app has a partnership with a health analytics platform health-
link.cn that helps customers to understand their health status.
The way to achieve this is interesting: the data is not shared
directly via the app for analysis. Instead, the app sends userid
(bound to the app’s own server) to healthlink.cn. This caught
our attention as 37º may allow third parties to retrieve cus-
tomer’s health data using a userid. Moreover, healthlink.cn

has a partnership with more than 20 health insurance and
health tech companies [49].
Cigarette holder. The Angmi cigarette holder [17] allows
smokers to monitor how much harmful substances (e.g., nico-
tine) they have inhaled via a companion app. We found that,
the app not only collects data that are shown in the app, such
as the number of cigarettes one has smoked, but also exposes
extra data without the user’s awareness, e.g., gathering data
points that may reveal a user’s smoking habits (such as when
and how many times a user smokes), health conditions (e.g.,
breathing capacity), and even where they smoke, etc. Even
worse, we noticed that such extra data points are sent over
HTTP to the cloud. This case confirmed a worsening situation
that the device users are not disclosed of IoT data collec-
tion, and meantime the device vendors are not capable of
safeguarding the data.

6.3 Responsible Disclosure

We have made responsible disclosures to both the app devel-
opers and app stores. For most of the apps (e.g., apps available
on Google Play), we can get their developer emails from the
app stores. Therefore, we have sent a total of 1,381 emails
for the apps that fail to disclose some IoT data items, and
suggested the developers update their privacy policies. We
used a Google Sheets extension “Yet Another Mail Merge”
(YAMM) [72] to track the status of the emails. One month
after our report, the emails were opened by 381 developers,
remain unopened for 850 developers, and bounced from 150
invalid email addresses. Note that in this process, we only col-
lected aggregated results of the emails provided by YAMM.
We never inspected the tracking information of individual
email addresses. The IRB from our institutions also confirmed



that this process was not subject to IRB review of human sub-
ject research since we did not obtain information about/from
individuals. Among the 381 opened emails, 21 developers
have acknowledged our findings and made changes to their
privacy policies to better disclose IoT data collection. Two
developers asked us to not include their names in our report.
For the rest of the emails, we did not receive any response yet,
or only received automatic responses.

Due to the low response rate of from app developers, we
also reported the list of apps to Google Play, 360 Store, and
APKPure, and asked their help to contract the developers.
Google Play responded to our request quickly and were inves-
tigating the privacy issues of the apps, while both 360 Store
and APKPure have not responded to our requests yet.

7 Discussion

Besides enabling the large-scale study, IoTProfiler can con-
tribute to other important scenarios. In particular, IoTProfiler
allows benign IoT device vendors to automatically check
privacy compliance of their IoT products. This is especially
important since the developers often fail to know what data
are collected by third-party libraries, which leads to serious
privacy risks as reported in the prior study [75]. Further,
complementary to the line of works that define privacy la-
bels [25, 31, 82], IoTProfiler can be easily tuned to automati-
cally generate fine-grained privacy labels, and provide better
data transparency to IoT users and potential customers.

Limitations. IoTProfiler relies on the assumption that IoT
companion apps carry text labels that indicate the presence
of IoT data. Our results show that the assumption holds for
the vast majority of apps, which allows us to locate IoT data
in 93.3% of the apps (i.e., 5,795 out of 6,208 apps in Dcp,
see Section 6.1). However, IoTProfiler is still limited in cases
where app developers deliberately avoid using any meaning-
ful labels to describe their IoT data. Further, we build an IoT
taxonomy by collecting IoT data points from a known set of
technical reports and documentations, which may inevitably
introduce biases to our study due to the potential presence of
other uncovered IoT devices and their data. Therefore, our ap-
proach will benefit from more effort to add diversified IoT data
to the taxonomy. IoTProfiler also inherits a few weaknesses
from its underlying techniques. For instance, we perform
static app analysis and thus can not handle any dynamic fea-
tures of the apps, e.g., such as side-loaded code. There are also
false positive/negative reports due to the inaccuracies in data
flow and privacy policy analysis. Such limitations can be alle-
viated by incorporating more advanced app and privacy policy
analysis tools. Besides, similar to previous works [53, 63], we
identify third-party domains by comparing them to package
names. This method is not reliable when package names fail
to reveal the identity of IoT device vendors.

8 Related Work

Analysis of IoT mobile companion apps. A few prior works
focused on analyzing the mobile apps of IoT devices for
security vulnerability discovery, e.g., prior studies [24, 77] use
in-app firmware fingerprints to identify IoT vulnerabilities. In
contrast, IoTProfiler leverages the observation that companion
apps process and label IoT data to identify exposed IoT data,
which has not been done before.

IoT privacy studies. Recent research extensively discussed
privacy implications of IoT devices. Specifically, Naeini et
al. [31] conduct interviews and surveys with privacy experts
to identify “privacy labels” that are required to inform IoT
device users. IoTWatch [21] and SAINT [23] perform code
instrumentation and taint analysis to improve privacy aware-
ness for SmartThings apps and device users. In comparison,
IoTProfiler does not analyze the cloud-side SmartThings apps
(simple and open-source scripts), but instead focuses on the
more complicated mobile-side IoT companion apps. IoTPro-
filer entails new techniques (Section 4) and enables us to
study data exposure of a much broader range of IoT devices
(compared to devices only under SmartThings).

Other works detect privacy issues based on network traffic
generated by real IoT devices. Ren et al. [63] evaluate and
report data exposure of 81 real IoT devices. Kumar et al. [46]
and IoTInspector [39] utilize crowdsourcing and network-
level scanning to collect labeled IoT traffics from smart homes.
The network traffic based approaches suffered from key lim-
itations such as the lack of concrete data items that can be
collected for analysis (Section 3). In sharp contrast, for ex-
ample, they could only analyze aggregated staticstics while
we can scrutinize fine-grained date items. Further, we devel-
oped novel techniques (Section 4) such as a learning-based
semantic-locator to identify IoT data in apps, and new data tax-
onomy to facilitate the semantic-analysis. These techniques
enabled us to perform a large-scale, fine-grained analysis of
IoT data exposure different from prior work (e.g., thousands
of devices compared to tens and low-hundreds, fine compared
to coarse grained analysis).

Privacy analysis of mobile apps. Recent works have dis-
cussed mobile apps and their privacy policies [16, 68, 76,
81, 84]. These works first analyze mobile apps to identify
what data are collected and shared. Afterwards, they check
whether the data practices are disclosed in the app privacy
policies. We note that these works cannot be used to identify
IoT data exposure. Specifically, they rely on a pre-defined list
of information-accessing APIs to locate mobile sensitive data.
However, the sensitive IoT data in our study are not returned
by such APIs, and thus identifying them in mobile compan-
ion apps is more difficult. To address the challenge, we build
an IoT data taxonomy and new semantic-aware approach to
identify IoT data blocks and data points (Section 4.3).



9 Conclusion

In this paper, we performed a comprehensive measurement
study on unauthorized data collection and exposure of the
IoT devices through their mobile companion apps. We pro-
pose IoTProfiler, a novel framework that combines machine
learning and program analysis, to address the challenge of
identifying IoT device data and tracking their disclosure from
mobile apps. We performed an analysis of over 6,208 IoT
companion apps to understand the data exposure risks at the
market level. Our research highlighted a series of findings
about IoT data exposure, which reveal the urgent need for
technologies that provide transparency of IoT data practices
for device consumers.
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Appendix A Comparing different models for
IoT Code Block Identification

To justify our selected fastText embedding model, we also
tried other alternative text embeddings. Specifically, we imple-

Figure 8: App-level precision and recall distribution of IoT
Data Identifier.

Figure 9: Precision and recall of identifying IoT data items
with different similarity thresholds.

mented word2vec and BERT, both of which are widely used
word-embeddings in NLP. For word2vec, we first performed
word-piece tokenization for each IoT code block. Then, we
trained a word2vec skip-gram model using Gensim [61]. We
set the min_count as 5 and set the vector dimension as 100.
Note that we did not take those public-available word2vec
model (e.g., the one trained on the Google News dataset [37])
for our classification task, as the semantics of program code
are very different from natural language, which causes many
out-of-vocabulary words. For the BERT embedding, we used
the BERT-base uncased model [36], and fine-tuned it over our
training corpus. In our research, all text labels in each code
block were treated as a single sentence. The BERT model
outputs the sentence-level embeddings of each code block.
The model has 12 transformer encoding layers, with the em-
bedding dimension of 768. The number of word-pieces is
around 30K.
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