
SoK: The Long Journey of Exploiting and Defending
the Legacy of King Harald Bluetooth

Jianliang Wu
Purdue University &

Simon Fraser University
wu1220@purdue.edu

Ruoyu Wu
Purdue University

wu1377@purdue.edu

Dongyan Xu
Purdue University
dxu@purdue.edu

Dave (Jing) Tian
Purdue University
daveti@purdue.edu

Antonio Bianchi
Purdue University

antoniob@purdue.edu

Abstract—Named after the Viking King Harald Bluetooth,
Bluetooth is the de facto standard for short-range wireless
communications. The introduction of Bluetooth Low Energy
(BLE) and Mesh protocols has further paved the way for its
domination in the era of IoT and 5G. Meanwhile, attacks against
Bluetooth, such as BlueBorne, BleedingBit, KNOB, BIAS, and
BLESA, have been booming in the past few years, impacting billions
of devices. While Bluetooth security has drawn significant attention
from the security research community, a systematic understanding
of this field is still missing, impeding the advancement of this field.

In this paper, we first summarize the evolution of Bluetooth
security in the specification in the past 24 years. Then, we provide a
systematization of Bluetooth security by diving into 76 attacks and
33 defenses presented by previous research in this area. We first
categorize attacks and defenses based on their affected layers and
protocols in the Bluetooth stack as well as their threat models. Then,
we cross-check the attacks and defenses to have a big picture of
Bluetooth security. Based on the systematization, we find that the ex-
isting formal analyses of Bluetooth do not cover most of the security
aspects of Bluetooth Mesh. Lastly, we take a step towards securing
Bluetooth Mesh by designing and implementing a comprehensive
formal model of Bluetooth Mesh covering all its security-related
protocols. Our systematization reveals, for instance, that the secu-
rity of Bluetooth pairing faces challenges caused by users’ mistakes,
and that Bluetooth fuzzing is effective yet not comprehensive. Based
on the systematization, we provide promising future directions to
shed some light on future Bluetooth security research.

1. Introduction

After the Viking King Harald Bluetooth [1] united the
Danish tribes over 1,000 years ago, his “legacy”, the Bluetooth
protocol, has become the de facto standard for short-range
wireless communications today. Since the introduction of
Bluetooth (Basic Rate, BR) in 1999, new features, such as
Enhanced Data Rate (EDR) and High Speed (HS), have been
added to improve its performance. Later, Bluetooth Low Energy
(BLE) and Bluetooth Mesh (Mesh) were released paving the
way for its domination in the era of Internet of Things (IoT)
and 5G. Together with Bluetooth Classic (BR/EDR/HS), the
Bluetooth protocol suite powers billions of devices [2].

Meanwhile, attacks against Bluetooth (e.g., BlueBorne [3],
BleedingBit [4], KNOB [5], [6], BIAS [7], and BLESA [8])

have been booming in the past few years, impacting billions of
devices. These attacks exploit both design issues in the Bluetooth
specification and implementation flaws in its implementations
allowing for privilege escalation, remote code execution,
breaking cryptography, spoofing, etc. Correspondingly,
different defense solutions have been proposed to address these
flaws within Bluetooth, including Linux eBPF modules [9],
InternalBlue [10], Frankenstein [11], and BlueShield [12]. These
defenses enable Bluetooth packet filtering, firmware analysis,
firmware fuzzing, device identification, etc., by leveraging dif-
ferent infrastructures, frameworks, and physical characteristics.

While Bluetooth security as a research field has already
drawn significant attention from the community, a systematic
understanding of this field is still missing, impeding the
advancement of this field. For example, no existing literature
presents how the Bluetooth security in the specification evolved
during the past 24 years and what the status quo is. Moreover,
due to its complexity, it is not well-explored whether the attack
model in the specification aligns with the one in real-world
attacks and defenses. In terms of attacks, it is still unclear what
the root causes are of existing attacks, how these attacks relate
to each other and relate to different parts of the protocol, and
whether they target only one Bluetooth protocol, e.g., Bluetooth
Classic (BC), or apply to other protocols. Similarly, on the
defense side, it is still unclear what the most effective and/or
least intrusive defenses might be, how these defenses relate
to each other and target different parts of the protocol, and
whether existing defenses can reasonably cover known attacks.

To address these issues, in this paper, we provide a
systematic study to categorize what has been done in the field
of Bluetooth security, and to highlight what is missing and
should be done as future work.

We first provide an overview of the evolution of Bluetooth
security and privacy features since its first version. Then, we
systematize the field of Bluetooth security by diving into 76
attacks and 33 defenses. To reason about known attacks, we
categorize them based on the layers of the Bluetooth stack they
target and the attack techniques they use. Similarly, we catego-
rize defenses according to the layers of the Bluetooth stack they
are designed to protect and the defense techniques they use. To
provide more insights, we also specify their scope (e.g., targeting
only BC or more), affected phase (e.g., device discovery phase
and data transmission phase), and attack models (e.g., whether
the device is compromised or not). For defenses, we also study

the prerequisites (i.e., hardware and software requirements) of
each defense. These studies allow us to cross-check the attack
and defense systematization to have a big picture of today’s Blue-
tooth security. Our findings, to name a few, include: 1) the BLE
device discovery phase draws most privacy attacks; 2) pairing
security faces challenges caused by users’ mistakes; 3) Bluetooth
specification has different assumptions from its implementations
on modern operating systems (OSes); 4) while being effective in
finding firmware vulnerabilities, Bluetooth fuzzing has limited
support for the host code; 5) there is no effective defense against
attacks exploiting users’ mistakes; 6) defenses against attacks
targeting BC and BLE encryption are still missing.

Building upon our systematization, we find that formal
analysis of Bluetooth is effective [8], [13]–[15] in finding design
vulnerabilities in the specification. However, the existing formal
analysis of Mesh [13] only considers its provisioning protocol,
leaving other security-related protocols (e.g., key refresh)
uncovered. Thus, to fill this gap, we take one step towards
securing Mesh by proposing a comprehensive Mesh formal
model covering all security-related protocols. We implement
our formal model using ProVerif [16] and verify 11 properties
covering all 8 different modes. Using our model, we rediscover
2 known attacks against Mesh. In addition, we also use our
model to confirm that Mesh is not vulnerable to any known
attacks anymore after applying the fixes suggested by Bluetooth
SIG. To foster future research in this field, our model is publicly
available [17]. To the best of our knowledge, our work is the
first to systematically examine Bluetooth security. Moreover,
we provide promising directions, e.g., more comprehensive
exploration of BLE and Mesh privacy, cross-stack security and
privacy evaluation, and comprehensive Bluetooth fuzzing, to
shed some light on future Bluetooth security research.

2. Bluetooth Evolution

Bluetooth is a short-range radio frequency standard,
maintained by the Bluetooth Special Interest Group (SIG), for
data exchange between different devices, such as smartphones,
laptops, and headsets. It works at the 2.4 GHz industrial,
scientific, and medical frequency bands. During the past 24
years, from version 1.0 to version 5.4 (the latest version at the
time of the paper writing), Bluetooth has evolved into three
different protocols, namely Bluetooth Classic, Bluetooth Low
Energy, and Bluetooth Mesh.

Regardless of the used protocol, Bluetooth communication
can be divided into three phases: device discovery, key sharing,
and data exchange. In the following of this section, we first
describe how each of the protocols works in these three phases,
then the evolution of its security and privacy features, and
lastly the status quo of each protocol’s security and privacy.
In Table 1, we summarize the main attacks exploiting the
design weaknesses in Bluetooth security features, their affected
Bluetooth versions, and corresponding mitigations.

2.1. Bluetooth Classic

Bluetooth Classic (BC), which is primarily used for
audio streaming, includes three different modes: Basic Rate

(introduced in Bluetooth 1.0 [38]), Enhanced Data Rate
(introduced in Bluetooth 2.0 [39]), and High Speed (introduced
in Bluetooth 3.0 [40] and removed since Bluetooth 5.3 [41]).
BC works in a central-peripheral scheme to form a piconet [41,
p.1405]. The initiator of the connection usually acts as the
central (e.g., a smartphone), and the responder (e.g., a headset)
acts as the peripheral.

To communicate, two devices first discover each other in
the device discovery phase using an inquiry-response procedure.
The central BC device sends inquiry requests, and the peripheral
device responds with inquiry responses to be discovered by
the central device. After that, BC leverages a pairing process,
which may require the user’s confirmation (e.g., pressing a
button), for the two devices to agree on a shared secret key.
The two devices can store this key for future use. Lastly, in
the data exchange phase, two BC devices first conduct a
challenge-response scheme authentication procedure to verify
they share the same secret key. Then, they use the shared secret
key to encrypt/decrypt the exchanged data.

2.1.1. Security Evolution. The security mechanism of BC
involves three aspects: pairing, authentication, and encryption.
We detail each of the three aspects.
Pairing. In the early versions (Bluetooth 1.x and 2.0), BC uses
a legacy pairing protocol, during which the user needs to input
the same Personal Identification Number (PIN) on both devices.
In the legacy pairing protocol, the four-digit PIN [41, p.268]
is the only source of entropy for a passive attacker to derive
the shared secret key. As such, the attacker can sniff the traffic
during pairing and brute-force the PIN value to recover the
shared secret key [18]–[20]. In addition, if a device supports
connecting to another device with the same MAC address as
itself, an attacker can launch reflection attacks [21] to get the
secret key even without knowing the PIN.

To address the above weaknesses, Secure Simple Pairing
(SSP) was introduced to replace the legacy pairing protocol
in Bluetooth 2.1 [42]. SSP adopts the Diffie-Hellman Key
Exchange (DHKE) protocol to defend against passive attacks
and introduces four pairing methods, namely Just Works
(JW), Out of Band (OOB), Passkey Entry (PE), and Numeric
Comparison (NC). The method is chosen based on the user I/O
interfaces (e.g., screen and keyboard) of the devices. NC and
PE are authenticated since user confirmation, such as pressing
a button or inputting a PIN, is required during pairing. For
OOB, whether it is authenticated relies on whether the OOB
channel is authenticated or not. Since JW does not involve
any user confirmation, it is unauthenticated and vulnerable to
Man-in-the-Middle (MitM) attacks [43]–[48].

In the latter versions (3.x, 4.x, and 5.x), the SSP protocol
does not change significantly except adding requirements to mit-
igate certain attacks. Since version 5.1, the passkey in PE should
be randomly generated in each pairing [49, p.1087] to defend
against the attacks exploiting fixed or reused passkeys [22]–[24].
Also since version 5.1, a device should validate the received
key during DHKE to protect it from attacks exploiting invalid
public keys [15], [25]. In the 5.3 version, the specification states
that a device should fail the pairing process if the received

2

TABLE 1: Attacks exploiting design weaknesses in the specification, their affected Bluetooth versions and security features, and
corresponding mitigations. Text in the pink bar : the security feature affected by an attack across Bluetooth versions.

Protocol Mechanism Attack Bluetooth Version Mitigation1.0 1.1 1.2 2.0 2.1 3.0 4.0 4.1 4.2 5.0 5.1 5.2 5.3 5.4

BC

Pairing

PIN Brute-force [18]–[20] BC Legacy Pairing SSP
Reflection Attack [21] BC Legacy Pairing Spec. Update
Passkey Reuse [22]–[24] SSP Spec. Update
Invalid Key Attack [15], [25] SSP Spec. Update
Reflection Attack [21] SSP Spec. Update

Authentication
Legacy Auth. Bypass [7] Legacy Authentication Advisory [26]
Secure Auth. Bypass [7] Secure Authentication Spec. Update

Encryption

Correlation Attack [27]–[31] E0 Encryption AES-CCM
E0 Key Brute-force [5] E0 Encryption Spec. Update
AES Key Brute-force [5] AES-CCM Spec. Update

BLE
Pairing

Key recovery [32] BLE Legacy Pairing SCP
Reflection Attack [21] BLE Legacy Pairing Spec. Update
Passkey Reuse [22]–[24] SCP Spec. Update
Invalid Key Attack [15], [25] SCP Spec. Update
Reflection Attack [21] SCP Spec. Update

Encryption
AES Key Brute-force [6] AES-CCM SCO Mode
Device fingerprinting [33], [34] Advertising Spec. Update

Mesh Configuration
PIN Brute-force [21] Provisioning Advisory [35]
Commitment Malleability [21] Provisioning Advisory [36]
Reflection Attack [13], [21] Provisioning Advisory [37]

public key (or part of the key) is identical to its own [41, p.983]
to defend against reflection attacks [21] against PE.
Authentication. From Bluetooth 1.0 to 4.0 [50], BC uses
the legacy authentication procedure, which provides unilateral
authentication. Though this procedure can be applied twice to
achieve bilateral authentication [50, p.1114], the specification
does not mandate bilateral authentication. Accordingly, an
attacker can exploit the role switch feature (a feature that allows
two devices to switch their central and peripheral roles [41,
p.531]) to switch her role with the victim device’s role. Via role
switching, the attacker changes her role from the authenticatee
(peripheral) to the authenticator (central) so that she can bypass
the authentication on the victim device [7].

Since Bluetooth 4.1, the SIG has introduced the secure
authentication procedure that mandates bilateral authentication.
However, secure authentication can also be bypassed
by switching the roles of two devices in the middle of
the authentication [7]. Starting from version 5.3, the
specification [41, p.973] forbids the role switch in the
authentication procedure to mitigate the authentication bypass
attack. Note that without the secret key, even though an attacker
can bypass the authentication, she cannot communicate with
the victim device if the encryption is properly performed.
Encryption. From Bluetooth 1.0 to 4.0, BC uses the E0 [51]
stream cipher as the encryption algorithm for BC data exchange,
which is vulnerable to correlation attacks [27]–[31]. To mit-
igate the attacks against E0, Bluetooth 4.1 [52] introduced
the AES-CCM [53] algorithm for encryption. Since then, the
encryption mechanism has remained unchanged except for
adding additional requirements to mitigate certain attacks. In
version 5.2 [54, p.631], the specification requires that the entropy
of the encryption key is at least 7 bytes to mitigate the KNOB
attacks [5] against encryption exploiting the allowance of and
encryption key with one-byte-entropy.

2.1.2. Privacy Evolution. BC was designed with little privacy
considerations initially. BC uses a fixed MAC address, which

can be used as a unique identifier of a device. Even though only
half of the MAC address (24 bits) is included in the data packet
in plaintext, with a powerful sniffer, an attacker can recover the
full MAC address of a BC device to enable user tracking [55]. A
device’s MAC address is critical to its privacy due to the unique-
ness of its MAC address. As such, since Bluetooth 2.1, the non-
discoverable mode of BC has been introduced to help reduce the
chance of leaking the MAC address to an adversary. If a device
is in the non-discoverable mode, it does not respond to inquiry
requests, but it can still be connected from the devices that know
its MAC address. This mode reduces the chance for an attacker
to get a BC device’s MAC address in the device discovery phase.

2.1.3. Status Quo of BC Security and Privacy. Since Blue-
tooth 4.1, the Secure Connections Only (SCO) mode has been
introduced. In this mode, a device can only use state-of-the-art
security features and FIPS-approved algorithms [56], i.e., SSP
with authenticated pairing methods (e.g., NC and PE), secure
authentication, and AES-CCM with a 128-bit-entropy encryp-
tion key. Thus, if both devices are Bluetooth 5.4-compliant and
in the SCO mode, they are immune to all the above-mentioned
attacks exploiting design flaws of the security features.

In terms of BC privacy, a device is vulnerable to tracking
attacks if it is in use or is not in the non-discoverable mode. As
such, the best practice in the real world is to set the device in the
non-discoverable mode except during pairing. This is also the de-
fault setting on mainstream OSes, like iOS, Android, Linux, etc.

2.2. Bluetooth Low Energy

Bluetooth Low Energy (BLE), which is designed for
power-constraint devices, also works in a central-peripheral
scheme like BC. In the device discovery phase, the peripheral
device keeps broadcasting advertising messages. The central
device scans for the advertising messages to discover the
peripheral device. Similar to BC, BLE also uses a pairing
process for two devices to derive a shared secret key in the key

3

sharing phase. In the data exchange phase, the data exchanged
between the two devices is encrypted using the shared secret
key to provide confidentiality guarantees. In the latest version
of BLE (Bluetooth 5.4), a new feature named advertising
encryption is introduced, allowing the central device to receive
data with confidentiality guarantees from the peripheral device
in the device discovery phase without establishing a connection.

2.2.1. Security Evolution. Unlike BC, BLE does not have an
authentication procedure in the data exchange phase. As such,
BLE’s security involves two aspects: pairing and encryption (in-
cluding data exchange encryption and advertising encryption).
Pairing. The first release of BLE (Bluetooth 4.0) uses a legacy
pairing protocol for two devices to agree on a shared secret key.
Like the legacy pairing of BC, BLE’s legacy pairing protocol
also does not use the DHKE protocol. Thus, it is also vulnerable
to passive attacks, through which an attacker can recover the
secret key if she can sniff the traffic of pairing [32].

To mitigate this weakness, since Bluetooth 4.2 [57], the
Secure Connections Pairing (SCP) has been introduced. SCP
is similar to the SSP of BC as they have the same steps, but
different underlying cryptographic functions (e.g., SCP uses
AES-CMAC while SSP uses HMAC-SHA-256). Because of
the similarity, SCP also has the same weaknesses as SSP and
the same mitigations for these weaknesses. Specifically, the
weakness that allows an attacker to exploit fixed or reused
passkeys [22]–[24] has been addressed since Bluetooth 5.1 [49,
p.2450]. Also, since Bluetooth 5.1 [49, p.2446], attacks
exploiting invalid public keys [15], [25] are no longer effective.
Since version 5.3 [41, p.1578], the weakness enabling reflection
attacks [21] has been fixed.
Data Exchange Encryption. Since the introduction of BLE, it
uses AES-CCM as its encryption algorithm for data exchange.
For this reason, the attacks against BC E0 encryption [27]–
[31] are not effective for BLE. Additionally, the specification
also requires that the minimum entropy of an encryption key is
7 bytes [50, p.1966]. However, the entropy is not large enough
and can still be brute-forced [6].
Advertising Encryption. In Bluetooth 5.4, the SIG introduced
a new security feature that allows advertising messages to be
encrypted using AES-CCM [58, p.1351]. To use this feature,
two devices need to pair first, and then the peripheral device
shares a session key with the central device. The session key
is protected by the data exchange encryption introduced above.
After disconnection, the peripheral device broadcasts advertising
messages encrypted using this session key. The central device
can receive and decrypt the advertising messages because it
has the same session key. With this feature, the fingerprinting
attacks relying on plaintext advertising payload [33], [34] are
no longer effective.

2.2.2. Privacy Evolution. Unlike BC, BLE has been designed
with privacy considerations since its first release. While BC can
use only one fixed MAC address, the privacy feature of BLE al-
lows a device to use changeable MAC addresses. By switching to
different MAC addresses frequently, a BLE device is difficult to
track. The core of this privacy feature is the resolvable MAC ad-
dress (RMA) mechanism [50, p.1733]. A BLE device can use the

RMAes generated using a key [50, p.1733]. During pairing, the
BLE device shares this key with a peer device. When the device
uses RMAes, these MAC addresses seem purely random to other
devices while the paired peer device can use the received key to
resolve the RMAes [50, p.1744] and recognize the BLE device.

Since Bluetooth 5.0 [59], two privacy modes, device privacy
and network privacy, have been introduced to further enhance
BLE privacy. If a device is in the device privacy mode, it can
only use changeable MAC addresses, and it can communicate
with a device using a fixed MAC address. If a device is in the
network privacy mode, both devices can only use changeable
MAC addresses.

From Bluetooth 4.0 to 5.1, the specification requires that
the minimum time interval between the MAC address changes
is 15 minutes [49, p.2226], without an upper limit. As such,
many BLE devices in the real world do not change their MAC
addresses even for days [34], [60] compromising their privacy.
To address this issue, since Bluetooth 5.2, the specification
has required that the maximum interval between MAC address
change is 15 minutes [54, p.1414].

2.2.3. Status Quo of BLE Security and Privacy. Since
Bluetooth 4.2, BLE has also introduced the SCO mode, in which
the SCP with authenticated pairing methods (e.g., NC and PE)
and a 128-bit-entropy encryption key are used. Like BC, if both
Bluetooth 5.4-compliant BLE devices are in the SCO mode,
they are not affected by all the previously mentioned attacks.

For BLE privacy, except for the privacy issues caused
by configuration or implementation [33], [34], [60]–[62], no
weakness of the BLE privacy feature has been revealed.

2.3. Bluetooth Mesh

Though Bluetooth Mesh (Mesh) is built on BLE, it does
not adopt BLE’s central-peripheral scheme. Mesh utilizes
BLE advertising to allow devices to form a mesh network that
supports many-to-many communications.

In the device discovery phase, Mesh uses the same
advertising mechanism as BLE to let devices discover each
other. In the key sharing phase, instead of pairing, Mesh uses
a configuration procedure to distribute secret keys to Mesh
devices. In the data exchange phase, Mesh uses the shared
secret keys to encrypt/decrypt the transmitted data.

2.3.1. Security Evolution. Since Mesh’s introduction,
its security features, which primarily involve two parts,
configuration and encryption, have remained unchanged.
Configuration. A Mesh device must have two types of secret
keys (i.e., network key, and application key) for encryption. A
device obtains these keys via the following two steps. First,
before joining a Mesh network, a Mesh device needs to be
provisioned via the provisioning protocol [63, p.229]. During
provisioning, the Mesh device receives a network key from the
provisioner. Second, after joining the Mesh network, the Mesh
device is further configured, usually by the provisioner, to run
certain applications and to receive corresponding application
keys (encrypted using the network key).

4

There are several known weaknesses in the provisioning
protocol. The improper design of the authentication in the pro-
visioning protocol allows for reflection attacks leading to device
impersonation [13], [21]. The PIN used during provisioning may
have a small entropy, e.g., 1 byte, and is vulnerable to brute-force
attacks [21]. The calculation of the commitment value in the
provisioning protocol is malleable resulting in PIN leakage [21].
An attacker can launch any of the three attacks to get the network
key and application key during the configuration process.
Encryption. In the data exchange phase, Mesh requires two
layers of encryption, the network layer using an encryption key
derived from the network key and the application layer using the
application key. All devices within the same network or running
the same application share the same network key and application
key. As such, only the Mesh device within the same network
running the same application can decrypt the messages. Mesh
also uses AES-CCM as its encryption algorithm and mandates
a 128-bit-entropy encryption key [63, p.101].

2.3.2. Privacy Evolution. Unlike BC/BLE, Mesh does not
transmit source or destination MAC addresses in plaintext. It
encrypts the destination MAC address together with the payload
and obfuscates the source MAC address using a privacy key
derived from the network key. By encrypting and obfuscating
the MAC addresses, it is difficult to track a Mesh device.

2.3.3. Status Quo of Mesh Security and Privacy. In the latest
version of Mesh specification [63] at the time of the paper
writing, the weaknesses of the provisioning protocol mentioned
earlier still exist. However, these weaknesses are addressed via
advisories from the SIG [36], [37], [64].

2.4. Observations

Bluetooth is getting more secure. Though BC, BLE, and Mesh
all have their corresponding security features when they were
first released, from BC to Mesh, Bluetooth is getting more secure
across protocols. For example, when BC was introduced, it uses
the E0 stream cipher, which is vulnerable to the correlation
attacks [27]–[31]. BLE uses the AES-CCM encryption that is
immune to these attacks since its first release. In Mesh, the
entropy of the encryption key has to be 128 bits, preventing
brute-force attacks [6] that may affect BLE. Besides, Bluetooth
is also getting more secure within one protocol. For instance, the
SSP and the SCP were introduced to replace BC’s and BLE’s
legacy pairing protocols respectively to fundamentally address
the design weaknesses in the legacy protocols. Later, both BC
and BLE introduced the SCO mode to further enhance their
security by allowing only their latest security features.
Bluetooth is getting more private. From the firstly introduced
BC to the recently introduced Mesh, Bluetooth focuses more on
device privacy. BC is not designed with privacy considerations
since it uses fixed MAC addresses in plaintext, allowing naive
device tracking based on MAC addresses. BLE is designed
with privacy considerations that a BLE device can change its
MAC addresses and thus can prevent naive tracking. However,
its MAC address is still in plaintext and can be tracked if the
device does not change its MAC address frequently. In Mesh,

Applications

Host Layer (e.g., L2CAP, SMP, SDP)

Firmware Layer (e.g., LMP, LELL)

Physical Layer (Radio and Baseband)C
on

tro
lle

r
H

os
t

B
luetooth Stack

Figure 1: Layers of a Bluetooth stack.

the MAC addresses are either encrypted or obfuscated and are
not in plaintext anymore, making naive tracking ineffective.
Backward compatibility comes before security. BC and BLE
have introduced new security features (i.e., SSP, SCP, and secure
authentication) to replace the legacy ones (i.e., legacy pairing
and legacy authentication). Though the new security features
are more secure than the legacy ones, the legacy features are
still supported due to compatibility considerations. Similarly, to
be compatible with devices that do not support a large-entropy
encryption key, SSP and SCP still allow to use an encryption
key with less than 16-byte entropy (albeit larger than 7-byte).
Likewise, even though a device can be configured to use the
SCO mode to be more secure, to the best of our knowledge, we
are not aware of any general-purpose devices (e.g., smartphones
or laptops) using this mode by default. The reason is that in the
SCO mode, a device cannot pair and communicate with another
device that only supports JW, such as a headset or a speaker.

3. Systematization Matrix

As shown in Figure 1, Bluetooth is composed of a controller
stack and a host stack. The code of these two components
usually executes on different microcontrollers (MCU)1. The
controller stack code runs on an MCU within a Bluetooth
chip, while the host stack code usually runs on the main MCU
together with the host OS (e.g., Linux). We divide the Bluetooth
stack into three layers based on their functionalities and the
location where the functionalities should be implemented based
on the specification. The physical layer is located at the bottom
of the Bluetooth stack and is responsible for the physical signal
process. The firmware layer lies in the controller on top of
the physical layer, establishing link-layer connections and
transmitting and processing data between the physical layer
and the host layer. The host layer represents all components
in the host stack, including the protocols for data exchange on
the host stack, such as the Logical Link Control and Adaptation
Protocol (L2CAP) [41, p. 1011], and components to finish
specific tasks on the host stack, such as Bluetooth profiles [65].

To study existing attacks and defenses of Bluetooth and
summarize their similarities and differences, we first conduct
a survey of Bluetooth attacks and defenses of existing research
covering all the papers published in the big four top-tier
conferences (i.e., S&P, USENIX Security, CCS, and NDSS)
from 2000 to March 2023. We also select papers from academic

1. On embedded devices, the host and controller stacks may be executed on
the same MCU.

5

conferences and journals that are broadly related to Bluetooth se-
curity and privacy (including but not limited to MobiSys, WiSec,
PETS, and WOOT). For industry conferences, we focused on
the three most reputable ones: Black Hat, DEF CON, and CCC.
We select papers from these venues using the following criteria
based on our judgment. For attacks, we select papers revealing
previously-unknown Bluetooth security and privacy issues. We
skip papers discussing application-level vulnerabilities that are
not caused by Bluetooth itself (e.g., problems in device tracking
protocols based on BLE [66]). For defenses, we include papers
talking about detecting or mitigating existing Bluetooth attacks.
Lastly, we also include attacks that are not covered in the above
but are reported by The Hacker News [67] (the most popular
cybersecurity media according to FeedSpot [68]).

To further understand the capabilities of the attacks and
the scope of the proposed defenses, we classify the surveyed
attacks and defenses by their affected layers. At each layer, we
further group attacks and defenses into subcategories based
on the techniques used, as we will discuss in Section 4 and
Section 6. Moreover, for each attack/defense, we analyze its
affected protocols (i.e., BC, BLE, and Mesh), affected phases
(i.e., device discovery, key sharing, and data exchange), and
attack model (i.e., Dolev-Yao [69], whether the device is
compromised, and whether user mistakes are required).

To better reflect the cost of attacks and defenses, we divide
each attack model into more fine-grained categories. In the
Dolev-Yao attack model, we further investigate the hardware re-
quired by each implementation of attacks and defenses. Moving
from stronger towards weaker capabilities, we study if an attack
or defense requires Software Defined Radios (SDR, e.g., USRP
B210 [70], around $2,000), Programmable-Firmware Devices
(PFD, the device of which the firmware is programmable, e.g.,
Ubertooth [71], around $150), or Generic Bluetooth Adapters
(GBA, e.g., USB Bluetooth adapter [72], around $15). In the
attack model where a communicating device is compromised,
we study the permissions required by each attack and defense.

In general, attacks and defenses targeting BLE and Mesh
require weaker hardware capabilities compared with BC. All
BLE devices, including GBAs, can inject and eavesdrop on arbi-
trary advertising messages in the device discovery phase of BLE.
Therefore, GBAs are enough for attacks or defenses targeting
the data in BLE advertising messages (i.e., MAC addresses or
payloads) in the device discovery phase. However, GBAs are not
powerful enough to obtain the physical features of BLE advertis-
ing messages, nor can they eavesdrop on or inject messages in the
other two phases (i.e., key sharing and data exchange) because
of the Frequency Hopping (FH) mechanism in these two phases.
Therefore, attacks or defenses relying on physical features (e.g.,
accurate timing [73] or carrier frequency offset [74]) of BLE
advertising messages or targeting the other two phases (e.g., data
exchange [75]) require SDRs or PFDs. Attacks or defenses at
the physical layer of Mesh have the same requirements as BLE
since Mesh is built upon the physical layer of BLE. For BC,
GBAs cannot inject or eavesdrop on arbitrary messages (i.e.,
inquiry scan and response) during the device discovery phase.
Accordingly, attacks or defenses of BC discovery phase require
SDRs or PFDs (e.g., Blue’s clue [76]). BC also uses FH in the
key sharing and data exchange phases resulting in the need for

SDRs or PFDs for attacks and defenses in these two phases [55].
We will refer to these three types of hardware capabilities when
we study each attack in Table 2 and defense in Table 3.

Lastly, we investigate the relationship between attacks
and proposed defenses (Section 7) based on the analysis and
layered categorization, which allows us to find the missing parts
of current defenses (Section 8). It can also guide the future
direction to make Bluetooth more secure (Section 9).

4. Systematization of Attacks

In this section, we present the attacks against Bluetooth we
studied during the survey.

4.1. Physical Layer

Since Bluetooth’s physical signal is transmitted Over The Air
(OTA), which is an accessible medium to an attacker within phys-
ical proximity, attacks against the physical layer can be grouped
into two categories, signal eavesdropping and signal injection.

4.1.1. Signal Eavesdropping. BC employs a FH spread
spectrum mechanism, in which the hopping sequence is
determined by the central device’s MAC address and clock, to
avoid signal interference. The central device’s MAC address
and clock are available only during the device discovery period.
As such, in the data exchange phase, the central device’s (if
non-discoverable) MAC address and clock are unknown to
an attacker. Accordingly, FH can prevent an attacker from
eavesdropping on BC communications since the attacker does
not know the hopping sequence and cannot hop along with the
communicating devices to receive the signal.

However, despite the unavailability of the central device’s
MAC address and clock to an attacker, she can either brute-
force [77] or infer [55], [78] the central device’s MAC address
and clock to figure out the hopping sequence. As a result, the
attacker can further eavesdrop on unencrypted data [78] or track
the user [55], compromising the user’s privacy. An attacker can
also eavesdrop on the whole Bluetooth bandwidth to conduct
relay attacks [79].

Since BLE also adopts a similar FH mechanism to combat
interference in the data exchange phase, an attacker can also
brute-force the parameter to calculate the hopping sequence
to enable eavesdropping [78]. Once the data is eavesdropped,
though encrypted, the device user’s privacy can be leaked. For
example, with the captured BLE traffic from a fitness tracker, the
attacker can further detect the current activity of the user [60].

In addition, in the device discovery phase of BLE, the periph-
eral device proactively broadcasts advertising messages contain-
ing its MAC address. As such, an attacker can sniff the peripheral
device’s advertising messages to track it and its user if it uses an
unchanged MAC address [33], [80]. In the case where the periph-
eral device frequently changes its MAC address, the attacker can
still identify and track a BLE device either via fingerprinting [74]
or by linking its BLE advertising messages to its unique BC
MAC address if it is BC/BLE dual-stack [73]. Besides BLE itself,
there are protocols that are built upon BLE advertising, such as
Apple’s Find My [81] and Continuity [82] protocols. If these

6

protocols are not carefully designed to preserve privacy, devices
running these protocols can be easily tracked because of BLE’s
proactively broadcasting nature. For example, even with BLE’s
privacy features enabled, an attacker can still track these devices
by exploiting the location reports in the Find My protocol [83],
the usage of usernames in BLE’s advertising messages [84], or
the usage of predictable sequence numbers [85], [86].

Since Mesh is built upon BLE, theoretically, the attacks
against BLE can potentially affect Mesh. However, due to
Mesh’s different addressing mechanism (MAC addresses are
either encrypted or obfuscated) [63, p.23], attacks relying on
BLE’s MAC address [33], [80] or targeting protocols that are
based on BLE [83]–[86] are not effective against Mesh while
other BLE eavesdropping attacks [60], [73], [74], [78] are
potentially effective against Mesh.

4.1.2. Signal Injection. As mentioned in Section 2.1.2, a
BC device does not respond to inquiry requests while it still
responds to connection requests if it is in the non-discoverable
mode. Since initiating a connection request only requires
the MAC address, an attacker can inject probing connection
requests brute-forcing all the MAC address space. Therefore,
the attacker can discover a nearby device that is in the
non-discoverable mode if she can receive responses [76], [87].

Similar to BC, the probing method also affects BLE privacy.
An attacker can inject probing BLE advertising messages with
specific MAC addresses. If the victim device uses the “filter
accept list” [58, p.1314] feature that allows the victim device
to automatically respond to the advertising messages from
devices on the list. The attacker can infer that the victim device
is close to the attacker, if she receives responses for the probing
advertising messages, violating the victim device’s privacy [62].

Besides privacy, signal injection also affects security. The
specification (from Bluetooth 4.2 to 5.2) allows a BLE device
to expand the receiving time window to compensate for clock
inaccuracy. As such, an attacker can exploit this feature to
increase the chance to inject malicious traffic into an established
BLE connection to perform MitM attacks [75]. Additionally,
since Bluetooth 5.0, the FH sequence of BLE can be guessed,
leading to jamming attacks against BLE [88].

4.2. Firmware Layer

Firmware is a piece of software running on an MCU of a
Bluetooth chip. Like other software, it may have implementa-
tion errors that can be exploited by attackers. We categorize
attacks against the firmware at the implementation level into the
firmware exploitation subcategory. Since the firmware imple-
ments BC/BLE/Mesh’s security features discussed in Section 22,
it is also affected by attacks exploiting design-level weaknesses
of these features. We categorize such attacks into three subcate-
gories, namely breaking key sharing, authentication bypass, and
breaking encryption, based on the targeted feature of the attack.

2. BC pairing, authentication, encryption, and BLE encryption are
implemented at the firmware layer. The BLE pairing, Mesh configuration, and
Mesh encryption reside at the host layer. However, due to the similarity of these
features, we include the attacks against BLE pairing and Mesh configuration
and encryption into the firmware layer to simplify the description.

4.2.1. Firmware Exploitation. Since the firmware lies
between the physical layer and the host layer, it handles inputs
from both directions (i.e., OTA packets from the physical layer
and data from the host layer). Accordingly, the firmware can
be exploited both OTA and locally.

An attacker can launch attacks like Denial of Service
(DoS) [89]–[91] and Remote Code Execution (RCE) [4], [10],
[11], [92] OTA against a victim device. Attacking the firmware
OTA is stealthier, and it needs PFDs or SDRs. This is because
these attacks need to send malformed messages to trigger
vulnerabilities within the firmware, which GBAs usually cannot
do. Both BC and BLE have their corresponding firmware
implementations, and thus can be affected by firmware
exploitation attacks. Since Mesh relies on BLE’s firmware
implementation, the attacks affecting BLE [4], [11], [89] can
also potentially affect Mesh. Besides attacking the firmware
OTA, if an attacker can interact with the firmware from the host
layer (i.e., has the permission to send data to the firmware), she
can also exploit the firmware locally [91], [93].

4.2.2. Breaking Key Sharing. Attacks in this subcategory
exploit the design weakness of the protocols in the key sharing
phase, such as the SSP of BC, the SCP of BLE, and the Mesh
provisioning protocol. To perform these attacks, an attacker
needs to conduct selective jamming or sniffing, and thus, PFDs
or SDRs are required. Most of the attacks in this category have
been introduced in Section 2, including the attacks against BC
pairing [15], [18]–[25], [43]–[48], BLE pairing [15], [21], [25],
[32], and Mesh provisioning [13], [21]. All the above attacks
assume the classic Dolev-Yao attack model without requiring
the user’s mistakes in the key sharing phase.

BThack [94] and PE pairing method confusion attacks [95],
[96] prove that with a minor user mistake during BC/BLE
pairing, which is caused by the confusion of used pairing
methods, an attacker can launch MitM attacks against the two
devices. What is worse, users are likely to make mistakes since
they are not well-notified during pairing [97]. BThack exploits
the confusion of the NC and PE pairing methods, while PE
pairing mode confusion attacks exploit the confusion of the
legacy PE pairing method and the PE pairing method in SSP
or SCP. BThack is effective even if both devices are in the SCO
mode, and PE pairing mode confusion attacks are still effective
when one device is in the SCO mode. Compared to other attacks
against the key sharing phase, the SIG did not revise the speci-
fication to fix the issues causing these attacks. Instead, it issued
advisories suggesting preventing these attacks by improving the
user interface (UI) design to reduce the user’s chance of making
mistakes [95], [96], [98]. The reason behind this, we believe,
is that the specification assumes the Dolev-Yao attack model
only [41, p.268], in which the user does not make mistakes.

4.2.3. Authentication Bypass. Since only BC implements the
authentication procedure in the data exchange phase, attacks
in this category [7], [99] only affect BC. As mentioned in Sec-
tion 2.1.1, bypassing the BC authentication itself has a limited
impact. This is because two BC devices will enable encryption
after the authentication. Without breaking the encryption, an
attacker cannot inject/obtain any meaningful traffic into/from

7

TABLE 2: Attacks grouped into layers and attack types, and their corresponding goal, affected protocol, phase, and attack model.
DD: device discovery, KS: key sharing, DE: data exchange, DY: Dolev-Yao, DC: device is compromised, UM: user mistake.

Layers Attack Type Attack Malicious
Goal

Affected Protocol Affected Phase Attack Model

BC BLE Mesh DD KS DE DY DC UM

Physical
Layer

Signal Eavesdropping

BlueSniff [77], Full-band sniffer [55] Prv ● ◐ ● S
User identification [80], Device tracking [33] Prv ● ● G
Link BC/BLE [73], Location tracking [74] Prv ● ◐ ● S
User activity detection [60] Prv ● ◐ ● ● S
Device tracking [83]–[86] Prv ● ● G
BlueEar [78] Prv ● ● ◐ ● ◐ ● P
Relay attack [79] Sec ◐ ● ◐ ● ◐ ● S

Signal Injection
Discover non-discoverable device [76], [87] Prv ● ● S
Allowlist-based device tracking [62] Prv ● ● G
InjectaBLE [75], Btlejack [88] Sec ● ◐ ◐ ● P

Firmware
Layer

Firmware Exploitation

InternalBlue [10] Sec ● ● P
BrakTooth [90] Sec ● ● ● ● P
BleedingBit [4], JackBNimBLE [92] Sec ● ◐ ● P
SweynTooth [89] Sec ● ◐ ● ● P
Frankenstein [11] Sec ● ● ◐ ● ◐ ● P
Attack wireless coexistence [91], [93] Sec ● ● ◐ ● ◐ ● R

Breaking Key Sharing

PIN brute-force [18]–[20], [100] Sec ● ● P
Key recovery [32] Sec ● ● P
Just Works abuse [43]–[48], Exploit passkey reuse [22]–[24] Sec ● ◐ ● P
Invalid curve attack [15], [25] Sec ● ● ● P
BThack [94], PE pairing confusion [95], [96], MitM [97] Sec ● ● ● P ♢

BlueMAN [13] Sec ● ● P
BlueMirror [21] Sec ● ● ● ● P

Authentication Bypass Relay attack [99], BIAS [7] Sec ● ● P

Breaking Encryption Correlation attack [27]–[31] Sec ● ● H
KNOB [5], [6] Sec ● ● ● P

Host
Layer

Host Exploitation

BlueBorne [3], BlueFrag [101] Sec ● ● G
SweynTooth [89] Sec ● ◐ ● ● P
BrokenMesh [102] Sec ● ● ● P
ToothPicker [103] Sec ● ● ◐ ● ● G
BleedingTooth [104] Sec ● ● ◐ ● ● G

Illegal Service Access

Device mis-binding [105] Sec ● ● B
BLAP [106] Sec ● ● G R
BadBluetooth [107] Sec ● ● G B
Blacktooth [108] Sec ● ● P
Co-located app attack [109] Sec ● ● B
BLESA [8], Bluedoor [110], Downgrade attack [111], [112] Sec ● ● G
Toxic Friends [113] Sec ● ● R
CSIA [13] Sec ● ● ● B
BLURTooth [114] Sec ● ● ● P ♢

Privacy Violation Device tracking [33], Sensitive data leakage [34] Prv ● ● G
●: Target protocol/phase of an attack. ◐: The protocol/phase that is not targeted by an attack but can also be affected by the same attack.
S: SDRs required (e.g., USRP B210 [70]). P: PFDs required (e.g., Ubertooth [71]). G: GBAs required (e.g., USB Bluetooth adapter [72]).
R: Root permission required. H: Hardware modifications required. B: Bluetooth permissions required.

a BC connection. As such, the authentication procedure is
redundant given the protection provided by the encryption. This
might be the reason that the latter introduced BLE and Mesh do
not have similar authentication procedures to BC’s. Like attacks
in Section 4.2.2, attacks in this category also require selective
jamming or sniffing capabilities, and thus need PFDs or SDRs.

4.2.4. Breaking Encryption. The attacks against Bluetooth
encryption [5], [6], [27]–[31] have been introduced in
Section 2.1.1 and Section 2.2.1. Among these attacks, the KNOB
attacks [5], [6] assume the Dolev-Yao attack model and require
PFDs or SDRs to perform selective jamming and sniffing.

The correlation attacks [27]–[31], on the other hand, have
different assumptions that an attacker can obtain the key
stream of the E0 stream cipher. We believe it is not a realistic
assumption because the key stream generation is implemented
in the hardware. Since the key stream is not stored or output
to the firmware [115], [116], obtaining the key stream will rely
on either hardware modifications or side-channel attacks. As
such, we believe this is the reason why no real-world attacks
against the E0 cipher have been discovered, and why the E0
cipher is still supported in the 5.4 version of the specification,
though the E0 cipher is not secure.

4.3. Host Layer

The host layer of Bluetooth is usually integrated into the
OS, such as the BlueZ [117] stack on Linux. Inevitably, the
host part of Bluetooth may contain implementation bugs
that can be exploited by an attacker. In addition, Bluetooth
services, such as the ones for keyboard and headset connection,
are implemented at the host layer. Without proper access
control, these services can be illegally accessed by an attacker.
Moreover, the configuration and application-level data that may
leak a user’s private information (e.g., health information) is
also set at the host layer. As such, we group the attacks targeting
the host layer into three subcategories, host exploitation, illegal
service access, and privacy violation.

4.3.1. Host Exploitation. The host layer handles inputs received
from an OTA device through the firmware layer. Accordingly,
if the host layer contains vulnerabilities, an attacker can send
malicious messages OTA to trigger these vulnerabilities, causing
DoS [89], [103] or RCE [3], [101], [104] attacks that affect both
BC and BLE. Since Mesh allows using BLE’s Generic Attribute
Protocol (GATT) as a bearer [63, p.28], the attacks affecting
BLE [89], [103], [104] can also potentially affect Mesh. Besides
sharing protocols with BLE, Mesh also has its unique ones (e.g.,
the provisioning protocol and network management protocols).

8

Attacks against these protocols [102] are unique to Mesh. In
general, GBAs can help craft the malicious payload to exploit
the host layer (e.g., BlueBorne [3]), while using PFDs can
provide more flexibility for the attacks (e.g., SweynTooth [89]).

Compared to the firmware exploitation attacks, the host
exploitation attacks may cause a much larger impact. The
reason is that the firmware exploitation attacks may only affect
the Bluetooth functionality since the firmware runs on the
Bluetooth chip, while the host exploitation attacks can affect
the whole OS because the host layer of Bluetooth can run in the
OS’s privileged mode. For example, part of BlueZ runs within
the Linux kernel [118]. As such, the attacks targeting BlueZ
kernel code [3], [104] can affect the whole Linux kernel rather
than Bluetooth functionality only.

4.3.2. Illegal Service Access. The attacks in this subcategory
target the data exchange phase of Bluetooth communication
and allow an attacker to illegally access the services on the
victim device either from a malicious device impersonating
the legitimate paired peer device [8], [106], [107], [110], [111],
[114] or from a malicious component (e.g., a malicious app on an
Android phone) of the legitimate paired peer device [13], [105],
[109]. Accordingly, these two types of illegal access attacks
have different assumptions. Accessing services from a malicious
device follows the Dolev-Yao attack model (e.g., BLESA [8] and
Blacktooth [108]), while accessing services from a malicious
component assumes that one of the paired devices is compro-
mised (e.g., installing a malicious app [13], [105], [109]).

To access the victim device’s services from a malicious
device, the malicious device can first impersonate the legitimate
paired peer device and re-pair with the victim device via either
the assistance from a malicious app [106], [107] or the user’s
mistakes [114]. As such, the new pairing with the malicious
device overwrites the pairing with the legitimate peer device,
allowing the malicious device to access the victim device’s
services. An attacker can also impersonate the legitimate
paired peer device by exploiting design or implementation
vulnerabilities [8], [108], [110], [111] of the data exchange
phase without pairing with the attacker to access the victim
device’s services from a malicious device. To access the victim
device’s services from a malicious component of a legitimate
paired peer device, an attacker can use the shared secret key
on the legitimate peer device to bypass the protection provided
by authentication and encryption [13], [105], [109].

By accessing the victim device’s services, the attacker can
inject keyboard strokes [107] or spoofed data [8] into the victim
device, read sensitive data from the victim device [105], [109],
or even perform MitM attacks [111]. Since Mesh introduces
an extra layer of encryption at the application level, these illegal
service access attacks against BC and BLE do not affect Mesh.

4.3.3. Privacy Violation. Despite the privacy feature presented
in Section 2.2.2, improper configuration at the host level
can still undermine a device’s privacy. If the device is not
properly configured by the upper-layer application, the device
may include unique identifiers or personal information in the
advertising messages of BLE. An attacker can either track the
BLE device and its user leveraging these unique identifiers [33]

or obtain the user’s personal information [34]. GBAs can
receive BLE advertising messages, and thus are capable enough
to launch attacks in this category.

5. Attacks Takeaways

By analyzing existing attacks, as systematized in Table 2, we
found common trends regarding Bluetooth privacy and security
issues. Based on these trends, we have the following findings:
T1. BLE device discovery phase draws most privacy at-
tacks. Because of the unique device discovery mechanism of
BLE (i.e., BLE advertising), attacks against BLE privacy focus
on the device discovery phase. On the one hand, an attacker can
trivially receive advertising messages from a peripheral device.
The peripheral BLE device proactively broadcasts advertising
messages in the device discovery phase even though no device
around intends to discover it. On the other hand, these advertising
messages may contain private information, such as unique MAC
addresses and usernames, leading to tracking attacks [33], [80]
or privacy leakage [34]. Besides the device discovery phase, the
other two phases may raise privacy issues and should also be
scrutinized, as we will further discuss in Section 9.
T2. Pairing security faces challenges caused by users’ mis-
takes. Since a user’s confirmation is required during pairing,
if she is confused by which pairing method is used, she may
mistakenly confirm the pairing, resulting in MitM attacks [94].
Even worse, the SCO mode cannot prevent such attacks [94]–
[96]. Fundamentally addressing these issues requires protocol
modifications that will introduce compatibility concerns (e.g.,
the proposed defense against BThack [94]). The current defense
against these attacks relies on the user making no mistakes
during pairing. However, even for developers, it is not straightfor-
ward to understand which method should be used during pairing,
not to mention the general users [94]. As a result, it is challenging
to rely on the user’s right decision to secure Bluetooth pairing.
T3. Bluetooth specification has different assumptions from
its implementations on modern OSes. When two paired
devices reconnect, the specification assumes the Dolev-Yao
model, in which the two devices are not compromised. However,
in the real world, a device could have been (partially) compro-
mised (e.g., a malicious app running on an Android phone).
In fact, modern OSes are designed under the assumption that
an app could be malicious [119]. For this reason, the OSes
isolate each app using sandbox mechanisms. The inconsistency
of assumptions leads to the attack that a malicious app on an
Android phone with Bluetooth permissions can invoke Android
APIs to read/write data from/to any Bluetooth devices that are
paired with the phone [105], [109].

Because of this assumption inconsistency, the attacks [13],
[105], [107], [109] are not practical attack scenarios according
to the specification, but they pose a legitimate threat in the
real world. To the best of our knowledge, none of these attacks
can be prevented by specification updates. As such, it relies
on the developers of the general-purpose or IoT devices to
implement mitigations against these attacks (e.g., an additional
access control mechanism or application-level authentication
or encryption). One caveat for developers is to consider if
their system’s assumptions are in line with the specification’s.

9

If not, developers should consider implementing necessary
security mechanisms to prevent potential issues caused by the
inconsistency of assumptions.

6. Systematization of Defenses

Over the years, researchers have proposed multiple defensive
mechanisms to improve the security of Bluetooth. Similar to the
systematization for attacks, we study the target protocol, phase,
and attack model for each defense. To better understand the feasi-
bility of a defense, we also investigate the hardware (i.e., whether
extra SDRs, PFDs, or GBAs are required) and software (i.e., the
permission required to deploy the defense on a target device) pre-
requisites of a defense. Lastly, we categorize defenses into layers
based on the layer they are designed to protect and group them
into subcategories based on the defensive technique adopted.

6.1. Physical Layer

Defenses at the physical layer leverage the physical features
of a device’s Bluetooth signal to detect or prevent signal
injection and signal eavesdropping. In general, there are two
stages in a defense, a fingerprinting stage and an identification
stage. The defense first fingerprints authorized devices by
learning their unique physical features, such as the clock
skew [12], [120] and signal strength [12], [121]. Then, in the
identification stage, the defense keeps collecting the physical
features of the communicating devices and checking whether
these physical features are consistent with the fingerprints of
the authorized devices. If they are inconsistent, it means signals
from unauthorized devices are detected. The defense can warn
the user to defend against signal injection attacks, such as
BlueID [120] and BlueShield [12]. If they are consistent, it
means the signal is from an authorized device. In this case, the
defense can jam the communication channel so that an attacker
cannot receive the signal from the authorized device to defend
against signal eavesdropping attacks, such as BLE-guardian [34].

6.2. Firmware Layer

Like securing other protocols, at the implementation level,
researchers have proposed approaches to fuzz and analyze the
firmware (firmware fuzzing and analysis), through which imple-
mentation vulnerabilities can be revealed and further patched.
At the design level, formal verification, an effective automatic
method to detect design weaknesses, has also been adopted
by researchers to either discover design weaknesses in the
specification or provide security guarantees for the security pro-
tocols. Finally, to mitigate the issues caused by protocol design
weaknesses, researchers have proposed enhancements (protocol
enhancement) to fix the design weakness in the protocol.

6.2.1. Firmware Fuzzing and Analysis. Prior literature [122]–
[125] has proven the effectiveness of firmware fuzzing and
analysis to find firmware vulnerabilities. The same techniques
are also applicable to Bluetooth firmware.

Fuzzing techniques can be adopted to discover memory
corruption bugs in Bluetooth firmware. The fuzz input could

be generated from either a real device [10], [89], [90], [126]
or an emulated device [11]. In general, on the one hand, using
a real device to provide fuzz input can be easily ported to fuzz
the firmware of different controllers, while implementing the
emulated device for different controllers’ firmware needs extra
effort. On the other hand, providing fuzz input from an emulated
device has better performance since the input is not transmitted
OTA. Due to the closed-source nature of the firmware, firmware
fuzzing requires either reverse-engineering the device’s
firmware (e.g., InternalBlue [10] and Frankenstein [11]) or
self-implementing a piece of firmware (e.g., SweynTooth [89]).

Different from fuzzing, which needs to run the firmware,
statically analyzing the firmware [127], [128] can discover
security or privacy issues that are caused by insecure
configurations without running the firmware. For example,
through static analysis, the insecure configuration that a BLE
device can transmit data in plaintext allowing a passive attacker
to eavesdrop on the data can be detected [128]. In addition to
directly discovering security issues, firmware analysis can help
enhance firmware security, for example, by debloating [129].

6.2.2. Formal Verification. While firmware fuzzing and
analysis aims at automatically detecting issues in specific
firmware implementations, formal verification attempts to
detect design issues in the Bluetooth specification. Meanwhile,
due to the development of automatic formal verification tools,
such as ProVerif [130] and Tamarin [131], automatic formal
verification of Bluetooth protocols is feasible and efficient.

Since key sharing protocols (e.g., SSP) are the cornerstones
of Bluetooth security, they have drawn the most attention from
researchers. Due to the complexity of key sharing protocols,
researchers have different focuses on their modeling and
analyses, for example, a sub-protocol of a pairing method
(e.g., the Diffie-Hellman protocol [15]) or one specific pairing
method (e.g., NC in SSP [132] and PE in SCP [14]). Inspired
by the attack exploiting two different pairing methods [94],
researchers have also verified key sharing protocols in a more
comprehensive manner considering combinations of protocols,
for example, the analysis of BC SSP [13], BLE SCP [133],
and Mesh provisioning [13]. Besides the key sharing protocols,
researchers have also verified the authentication and encryption
procedures in the data exchange phase and identified issues that
allow spoofing [8] and illegal access attacks [13].

While automatic formal verification is effective in detecting
design weaknesses, the trade-off between the modeling
granularity and coverage needs to be carefully considered
by researchers to make the model tractable. Finer-grained
modeling may be able to discover more attacks, but it has to
sacrifice the model coverage (e.g., modeling and verifying part
of a whole protocol [14], [15]) to be tractable. On the contrary,
for better model coverage, researchers may need to adopt a
coarser-grained modeling choice for one part of the whole
protocol to make the model tractable [13].

6.2.3. Protocol Enhancement. To address certain design
weaknesses in Bluetooth protocols, different enhancements to
these protocols have been proposed. Existing enhancements
focus on two areas: BLE advertising and BC/BLE pairing.

10

TABLE 3: Proposed defenses grouped into layers, used techniques, security goals, protected protocols, phases, and attack models
of the defense. DD: device discovery, KS: key sharing, DE: data exchange, DY: Dolev-Yao, DC: device is compromised.

Layer Defense Technique Defense Goal
Prerequisites Protected Protocol Protected Phase Attack Model

HW† SW‡ BC BLE Mesh DD KS DE DY+ DC⋆

Physical
Layer Device Identification

BlueID [120] Sec P ● ◐ ◐ ● G
BLE-guardian [34] Prv P B ● ◐ ● G
BlueShield [12] Sec P ● ◐ ● G
Relay attack detection [121] Sec B ● ◐ ● G

Firmware
Layer

Firmware Fuzzing
and Analysis

BrakTooth [90] Sec P ● ● ● ● P
Sweyntooth [89], BLEDiff [134] Sec P ● ◐ ● ● ● P
FirmXRay [128] Sec&Prv ● ◐ ● ● ● G
ProXray [127] Sec ● ● ◐ ● ● ● G
InternalBlue [10], InsideJob [126] Sec P ● ● ◐ ● ● ● P
Frankenstein [11], LightBlue [129] Sec R ● ● ◐ ● ● ● P

Formal Verification

Formal analysis of SSP [132], [135], [136] Sec ● ● S
Formal analysis of BLE reconnection [8] Sec ● ● S
Formal analysis of SCP [133] and PE in SCP [14] Sec ● ● S
Formal analysis of Diffie-Hellman [15] Sec ● ● ◐ ● S
Comprehensive Bluetooth formal analysis [13] Sec ● ● ● ● ● S B

Protocol Enhancement Advertising enhancement [137], Eddystone [138] Sec R ● ● G
MagicPairing [139] Sec R ● ● ● ● S

Host
Layer

Host Fuzzing
and Analysis

BLEScope [140] Sec&Prv ● ● ● ● G
SweynTooth [89], BLEDiff [134] Sec P ● ● ● ● P
L2Fuzz [141] Sec P ● ● P
Frankenstein [11], ToothPicker [103] Sec R ● ● ● ● ● P
ProXray [127] Sec ● ● ● ● ● G
BLE Mesh fuzzer [102] Sec P ● ● ● G

Traffic Analysis
and Filtering

Intrusion detection [142] Sec S ● ● G
LBM [9] Sec R ● ● ● ● G
Interaction verification [143] Sec R ● ● ● ● ● G B

System Hardening
Dabinder [105], Profile binding [107] Sec R ● ● B
Application-level security [109] Sec R ● ● B
LightBlue [129] Sec R ● ● ● G

●: Target protocol/phase of a defense. ◐: The protocol/phase that is not targeted by a defense but can also be protected by the same defense.
†: P and G represent that a defense requires extra PFDs or GBAs, respectively. ‡: B and R indicate that a defense requires Bluetooth or the Root permission to deploy, respectively.
+: S, P, and G indicate that a defense assumes attackers to use SDRs, PFDs, or GBAs to attack, respectively. ⋆: B represents that a defense assumes attackers to have Bluetooth permissions.

To improve the security of BLE advertising, Wang et al.
introduced a counter in advertising messages and proposed
a three-way handshake scheme [137] to enhance BLE
advertising and defend against replay attacks. Google developed
Eddystone [138] which encrypts advertising messages so that
only authorized devices can decrypt them. Unfortunately, this
system is obsoleted at the time of the paper writing. Nevertheless,
in Bluetooth 5.4, a BLE device can encrypt its advertising
messages, as discussed in Section 2.2.1. Apple implemented
MagicPairing [139] to enhance the BC/BLE pairing protocol
between Apple devices. It relies on the iCloud service to
synchronize keys, based on which the Bluetooth secret key is
derived, among paired devices. For each communication, a fresh
secret key is generated. By doing this, MagicPairing can achieve
forward secrecy [144] that the specification does not provide.

Though enhancing the protocol can address its design weak-
nesses fundamentally, these enhancements face compatibility
issues since they require modifications of devices on both ends of
the communication. For this reason, to the best of our knowledge,
the three-way handshake scheme is not adopted by real-world de-
vices, and MagicPairing is enabled only among Apple products.

6.3. Host Layer

The firmware layer and the host layer share some defense
techniques. The host code can also be secured via fuzzing and
static analysis (host fuzzing and analysis). Moreover, Bluetooth
communication at the host layer can also be enhanced (system
hardening). Different from the enhancements at the firmware
layer, which require protocol modifications introducing
compatibility issues, enhancements at the host layer do not need
protocol changes and usually can be deployed at one end of the
communication.

There are also different defense techniques between the
firmware layer and the host layer. Potentially, formal verification
is also applicable at the host layer. However, none of the existing
formal verification can be categorized into the host layer because
the target protocols of existing formal analyses are implemented
in the firmware. Additionally, traffic analysis and filtering, the
technique employed in securing other network protocols [145],
[146], has been applied to Bluetooth at the host layer while not
applied at the firmware layer. The reason might be the closed-
source nature of the firmware, which makes implementing traffic
analysis mechanisms in the firmware challenging. Additionally,
the limited computing power of the MCU that the firmware runs
on may also impede the deployment of traffic analysis defenses.

6.3.1. Host Fuzzing and Analysis. Like firmware fuzzing,
the fuzz input for the host stack can also come from a real
device OTA [89], [102], [134] or from an emulated device [11],
[103]. Similarly, fuzzing OTA provides better scalability but
has lower performance. It is noteworthy that existing fuzzing
works are either protocol-specific (e.g., SweynTooth [89] only
supports BLE) or platform-specific (e.g., Frankenstein [11]
only supports Linux while ToothPicker [103] only supports
iOS). A generic fuzzing tool for the host layer is still missing. In
terms of host code analysis, instead of analyzing the host code
itself, a misconfigured device can be identified by analyzing
its communicating counterpart (e.g., a device’s companion
app) [140], which is different from the firmware analysis.

6.3.2. Traffic Analysis and Filtering. Like other protocols, the
traffic analysis can be performed at the network gateway [147]
or a communication endpoint [148]. Bluetooth traffic can also
be analyzed on a “gateway” device that sniffs the Bluetooth

11

TABLE 4: Comparison between attacks and defenses at different layers. Rows represent the defense techniques and columns show
the attack types. Each cell indicates the comparison between the defense technique and the attack type. Complete prevention, partial
prevention, complete detection, and partial detection are represented by ■, ◧, ●, and ◐ respectively. – means the defense cannot
defend against the attack.

Sig
na

l
Ea

ve
sd

rop
pin

g

Sig
na

l
Inj

ec
tio

n

Fir
mware

Cor
ru

pti
on

Brea
kin

g Key
Sh

ari
ng

Auth
en

tic
ati

on
Byp

ass

Brea
kin

g
En

cry
pti

on

Hos
t

Cor
ru

pti
on

Ill
eg

al
Se

rv
ice

Acc
ess

Pr
iva

cy
Viol

ati
on

Physical Layer Firmware Layer Host Layer
Device Identification ◧ ◐ − − − − − ◐ ◧

Firmware Fuzzing and Analysis − − ◐ ◐ − − − − ◐

Formal Verification − − − ◐ − − − − −
Protocol Enhancement ◧ − − − − − − − −
Host Fuzzing and Analysis − − − − − − ◐ − ◐

Traffic Analysis and Filtering − − − − − − ◧ ◧ −
System Hardening − − − − − − − ◧ −

traffic from around devices, or on an endpoint device that
communicates with other devices.

On the one hand, analyzing the traffic on a “gateway”
device [142] does not require modifications on the devices to be
protected, but it needs extra hardware and faces the challenges
introduced by Bluetooth frequency hopping [47], [55], [77].
On the other hand, while analyzing and filtering Bluetooth
traffic on an endpoint [9], [143] does not need extra hardware
and is not affected by frequency hopping, it requires software
modifications on the protected device. As such, performing
traffic analysis on an endpoint may not be applicable to low-end
devices whose software cannot be modified.

6.3.3. System Hardening. Defenses in this subcategory
focus on improving Bluetooth security by enhancing its
implementations. The defenses either add extra code (e.g.,
access control for available services [105], [107] and additional
security mechanisms, such as encryption and authentication
at the application level [109]) or remove unused code [129] to
harden the host code. Compared to the protocol enhancements
(Section 6.2.3), hardening the host code does not change
the protocol, and thus introduces little compatibility issues.
For example, introducing extra access control policies [105],
[107] or removing unused code [129] only need to modify the
high-end device (e.g., Android phones) and does not affect the
benign connections. Adding additional security mechanisms at
the application level [109] requires modifications on both ends.
However, since a device and its communicating counterpart
(e.g., a companion app) are usually developed by the same
vendor, the vendor can update the device and the app at the
same time to minimize compatibility issues.

7. Defenses Takeaways

Table 3 summarizes the defenses we surveyed. By cross-
checking the attacks’ and defenses’ target protocols, phases,
and attack models, we highlight the relationships between the
attack types and defense techniques in Table 4. In this table, we
evaluate a defense technique as complete prevention (■) if it can
completely mitigate a certain type of attack. Partial prevention
(◧) represents that the considered defense works in some cases,
but it cannot completely mitigate the attack. Complete detection
(●) means that the defense technique can detect the attack with
low false positives. Note that complete detection does not mean

the defense works perfectly, since many of these solutions work
only under specific assumptions. Finally, partial detection (◐)
indicates that the defense can detect some attacks but not all
attacks within a specific attack type. From the systematization
of the studied defenses, we have the following takeaways:
T4. Bluetooth fuzzing tools are effective yet not comprehen-
sive. Due to the stateful nature of Bluetooth, stateful fuzzing is
effective to discover implementation bugs at both the firmware
layer [89], [90] and the host layer [89], [102], [141]. However,
compared to the firmware layer, which is well-supported [89],
[90], existing tools have limited support for the host layer. For
example, SweynTooth [89] can only fuzz the central role of BLE
at the host layer. L2Fuzz [141] only fuzzes the L2CAP protocol
without considering other protocols (e.g., SDP [58, p.1170]) and
profiles (e.g., A2DP [149]). Because the state machines used
to guide fuzzing in these tools are built manually and protocol-
specific, existing tools cannot be readily adopted to fuzz other
host protocols and profiles. A fuzzing tool that can fuzz BC and
the peripheral role of BLE at the host layer (e.g., the BC and
BLE implementation on Linux and Android) is still missing.
T5. There is no effective defense against attacks exploiting
users’ mistakes. While there are attacks exploiting user mis-
takes [94]–[96], no defense considers users’ mistakes in its
attack model. Accordingly, none of the existing defenses are
effective against these attacks. To avoid compatibility issues (as
discussed in T2), an effective approach to defend against such
attacks might be improving the design of the user interfaces (UI)
involved in pairing, as we will further discuss in Section 9.
T6. Defenses against authentication bypass and breaking
encryption are still missing. As Table 4 shows (in the “au-
thentication bypass” and “breaking encryption” columns), no
existing defense techniques can defend against the authentication
bypass and breaking encryption attacks. As a result, the only
approach to protect a device from these attacks is to update its
software and/or hardware to make it compatible with a newer
version of the Bluetooth specification (5.2 and above). However,
updating software is already challenging [150]–[152], not to
mention hardware updates. As such, most of the devices that are
vulnerable to these attacks, such as KNOB [5] and BIAS [7],
are still affected by these attacks.
T7. Formal analysis of Bluetooth is incomplete. Formal
analysis of Bluetooth is effective [8], [13]–[15] in finding design
vulnerabilities in the specification. However, compared with BC

12

3: Data trans. (Enc{Enc{msg1, Appkey1}, Enck1})
4: Data trans. (Enc{Enc{msg2, Appkey1}, Enck1})

5: Key refresh and/or IV update (Netkey2, Appkey2, IV2) 5: Key refresh and/or IV update (Netkey2, Appkey2, IV2)

8: Friend setup

10: Data trans. (Enc{msg6, Frik})

9: Data trans.
(Enc{msg5, Frik})

Configuration
client

Device 1
2: Derive Enck1 from Netkey1
6: Derive Enck2 from Netkey2
7: Derive Frik from Netkey2

Device 2
2: Derive Enck1 from Netkey1
6: Derive Enck2 from Netkey2

Device 3
7: Derive Frik from Netkey2

8: Data trans. (Enc{Enc{msg4, Appkey2}, Enck2})
7: Data trans. (Enc{Enc{msg3, Appkey2}, Enck2})

1: Configuration (Netkey1, Appkey1, IV1) 1: Configuration (Netkey1, Appkey1, IV1)6: Configuration (Netkey2, Appkey2, IV2)

Figure 2: Interactions of security-related protocols in Mesh. Steps with the same number can be executed independently.

and BLE, for which the security protocols (i.e., pairing, authen-
tication, and encryption) have been fully modeled and analyzed,
the existing formal analysis of Mesh [13] only considers its
provisioning protocol and encryption. Other security-related
protocols (e.g., the key refresh protocol) are not analyzed yet.
To close this gap, as will be presented in Section 8, we provide
a comprehensive formal analysis of Mesh, which also includes
the key refresh, initial vector update, and friendship protocols.

8. Comprehensive Formal Analysis of Mesh

As discussed in T7, the existing formal analysis of Mesh
does not support all security-related protocols. To close this
gap, in this section, we present the design, implementation, and
evaluation of our comprehensive Mesh formal model that covers
all security-relate protocols. Note that the difference between the
existing research [13] and our model is that the existing research
does not cover the three protocols discussed in Section 8.1 (i.e.,
key refresh, initial vector update, and friendship) while our
model supports these protocols. In our model, we assume the at-
tacker has the capabilities defined in the Dolev-Yao attack model.

8.1. Model Design and Implementation

Before a Mesh device joins a Mesh network, it has to
go through a configuration procedure (configured by the
configuration client in Figure 2) in the key sharing phase,
during which it receives a network key, an application key, and
an initial vector (IV). After joining the Mesh network, in the
data exchange phase, other security-related protocols in Mesh,
i.e., the key refresh, IV update, and Mesh friendship protocols
may be executed. Figure 2 illustrates the interactions between
these security-related protocols.

We implement our model using ProVerif [16]. To align
with the Dolev-Yao attack model, the messages exchanged
between devices are via an open channel. We follow a similar
way to model the configuration as existing work [13] and detail
how to model the other three protocols as follows. Our model
is publicly available to promote future research [17].
Key refresh. After configuration, Mesh uses the key refresh
protocol to update a device’s network and application keys. By
refreshing the keys, the old keys can be revoked. There are three
steps to refresh a network or application key. 1) Distribution of
new keys: the configuration client sends new keys (Netkey2 and
Appkey2 of Step 5 in Figure 2) encrypted using a device key
(derived during the provisioning of the configuration procedure)
to the device whose keys need to be replaced. 2) Switching to the
new keys: after receiving the new keys from the configuration
client, a device can only send messages encrypted using the

new keys (Step 7 in Figure 2), but it can still receive messages
encrypted using the old keys. 3) Revoking old keys: after
receiving a notification message from the configuration client,
the device only sends and receives messages encrypted using
the new keys (Step 8 in Figure 2). A simplified implementation
of the configuration client is shown in Appendix B.
IV update. The IV value is used to derive the nonces for
encryption at the network and application layers. Updating the
IV value prevents the reuse of the same nonce. The IV update
starts from a Mesh device, such as the configuration client,
sending a message that indicates the IV update and contains
the new IV value. After receiving such a message, a device can
accept messages with both old and new IV values, but it can only
send messages with the old IV value. Then, the configuration
client sends a notification message indicating the end of the IV
update. Once receiving the notification message, the device can
still accept messages with both old and new IVs, but it can only
send messages with the new IV value. Note that IVs are not
considered confidential values in Mesh and are transmitted in
plaintext. The simplified IV update procedure (for the sender
side) is shown in Appendix B.
Friendship. The friendship protocol allows a general device
and a low-power device to establish a friendship through which
the general device can store messages for the low-power device
when it sleeps and send the stored messages to the low-power
device when it is awake. To establish a friendship, the low-
power device first sends a friend request message followed by
the general device responding with a friend offer message. Then,
the two devices derive the same key (Frik in Figure 2) from
the network key and their MAC addresses for the network-level
encryption. When the low-power device sends messages to the
general device or vice versa (Steps 9 and 10 in Figure 2), at the
network level, the messages are encrypted using the key derived
in the previous step (i.e., Frik). The simplified low-power device
is implemented as shown in Appendix B.

8.2. Evaluation
We verify the same properties as the existing work [13] for

the configuration procedure. These properties are whether the
configuration client and the device correctly authenticate each
other (P1 and P2), and whether the distributed keys (Netkey1
in Figure 2) from the configuration client and the response
from the device are confidential (P3 and P4). Besides, we also
verify the confidentiality of the distributed cryptographic keys
during the key refresh procedure, denoted by P5. Finally, since
the encryption is designed to guarantee the confidentiality
of the transmitted messages between devices, we verify the
confidentiality property of transmitted messages (msg1 - msg6
in Figure 2), denoted by P6 - P11, respectively.

13

As discussed in the existing work [13], the Mesh
configuration has 8 different modes for provisioning
(combining 2 different public key exchange methods with 4
authentication methods). We verify all the properties (P1 - P11)
in all the 8 modes denoted by M1 to M8, respectively. Moreover,
we also verify these properties after applying the fix to known
attacks following the adversaries from Bluetooth SIG [36], [37],
[64]. We run our verification on a server with two Intel (R)
Xeon (R) Gold 6258R CPUs and 1TB of memory. The detailed
results are shown in Table 5 in Appendix A.

As the table shows, our model can discover existing attacks,
including BlueMAN [13], BlueMirror [21], and the MitM
attacks against the non-authenticated configuration procedure.
The “Fix” column in Table 5 shows that all the properties hold
after applying the fix suggested by Bluetooth SIG.

Although our model covers more security-related protocols,
it has limitations. Since ProVerif does not support the complete
modeling of the exclusive or (xor) operation [153, p.45], our
model cannot discover the malleability issue described in the
existing work [21]. In addition, our model does not support the
execution of devices with unbounded sessions.

9. Future Directions

Based on our systematization, we realized that the current
defenses cannot completely secure Bluetooth, as discussed in
T4, T5, and T6. As a partial mitigation, we took one step toward
completing Bluetooth defenses by formally verifying security-
related protocols in Bluetooth Mesh (Section 8). However,
that is far from enough. Here, we point out the possible future
directions that could help improve Bluetooth security.
Privacy exploration of BLE and Mesh. Due to the use of
BLE advertising in the contact tracing mechanism [154]–[156]
in response to the COVID-19 [157] pandemic, BLE’s privacy
in the device discovery phase has drawn a lot of attention
from researchers, as discussed in T1. However, BLE privacy
in the key sharing and data exchange phases is less explored,
especially after unpairing. For example, when a user pairs her
phone with another device (e.g., a smart lock of an Airbnb
apartment) and unpairs them later, it is not clear if this device
can recognize the phone and further infer the location of the
phone’s user. Moreover, no existing research focuses on Mesh
privacy. Therefore, more exploration of BLE privacy in the key
sharing and data exchange phases as well as a complete analysis
of Mesh privacy is necessary.
Cross-stack security and privacy evaluation. BC and BLE
allow the secret key of BC to be derived from the secret key of
BLE and vice versa for a better user experience (only one pairing
is needed to pair both BC and BLE). This design choice leads
to the CSIA [13] and BLURTooth [114] attacks. In terms of
privacy, the privacy of a device’s BLE stack can be compromised
via its BC stack [73] because of their coexistence. Besides, BLE
and Mesh also share the firmware layer, physical layers, and
the GATT profile (for proxy devices) at the host layer, which
may also have security and privacy implications. Therefore,
more security and privacy evaluation of BT-BLE, BLE-Mesh
dual-stack, or even triple-stack devices should be conducted.

Host layer fuzzing. As discussed in T4, existing tools have
limitations in fuzzing the host layer. Accordingly, the imple-
mentation security of frequently used profiles (e.g., A2DP and
HID [158]) at the host layer is not thoroughly studied. One
research direction is to build fuzzing tools that support all
protocols and profiles implemented at the host layer. Ideally,
stateful fuzzing will be preferred, based on the effectiveness of
existing stateful fuzzing tools at the firmware layer [89], [90].
A possible challenge is how to build a state machine to guide
fuzzing across different protocols (e.g., L2CAP and SDP) given
that every protocol has its own state machine.
Better UI design of Bluetooth pairing for security and its
evaluation. T2 shows that users’ mistakes during pairing can
lead to attacks, and no existing defense is effective against such
attacks without introducing compatibility concerns, as discussed
in T5. To prevent these attacks, one possible solution is to design
a better UI for pairing to help users avoid making mistakes.
In fact, the SIG suggests differentiating pairing methods in
the UI to avoid users erroneously approving the pairing [95],
[96], [98]. However, in contrast with other fields (e.g., browser
security [159], [160]), no systematic study has been performed
on the usability and security of the UIs used by different devices
during pairing. As such, how to design a better UI for Bluetooth
pairing and how to conduct user studies to properly evaluate the
design are still open questions, which are worth exploring.
Minimizing the functionality of firmware. Though several
vulnerabilities have been found in Bluetooth firmware, the
closed-source nature and the absence of patching mechanisms
limit the prevention and mitigation of these attacks. As a result,
the devices are left vulnerable if no other mitigation is proposed,
as discussed in T6. For instance, the pairing procedure of BLE
is implemented in the host while the pairing procedure of BC is
in the firmware. Therefore, developers can fix the KNOB [5],
[6] vulnerability of BLE by modifying the host code. While
for BC, developers can only implement workarounds at the
host layer [161] since the firmware is closed source and usually
cannot be modified. One possible direction to address this issue
is moving some firmware functionalities to the host so that it is
easier to patch vulnerabilities.
Deprecation of legacy pairing methods. Table 1 shows that
legacy pairing methods are vulnerable to diverse attacks, and
one solution is to use the SCO mode where the most advanced
security features are used. However, as discussed in T2, recent
attacks [95], [96] are still effective if one device is in the
SCO mode and the other one is using a legacy pairing method.
Defense against these attacks relies on users to verify that two
pairing devices use the same (secure) pairing method (i.e., SSP
for BC and SCP for BLE). Users may be able to verify the
pairing method if both devices have interfaces allowing for both
input and output (e.g., smartphones and laptops). For example,
when pairing two smartphones, each phone can show the pairing
method it uses on its screen. However, it is challenging for users
to verify the method if one device has limited user interfaces
for input or output (e.g., Bluetooth headsets and bulbs). One
fundamental solution could be deprecating the legacy pairing
methods and only supporting the secure ones. However, this
solution needs proper evaluation of its cost and usability impact
on end-users, and it necessarily needs close coordination and

14

collaboration between the SIG and Bluetooth vendors.

10. Conclusion

To understand Bluetooth security as a research domain, we
have analyzed 76 attacks and 33 defenses since Bluetooth was
introduced, covering more than 20 years of Bluetooth security
research. Our systematization provides new insights regarding
Bluetooth attacks and defenses and suggests promising research
directions. The formal verification of Mesh we provided takes
one step towards securing Bluetooth Mesh. In summary, our
work provides a foundation to secure King Harald’s “legacy”
in the future.

Acknowledgment

We thank the anonymous reviewers and shepherd for their
valuable comments and suggestions. This work was supported
in part by the National Science Foundation (NSF) under
Grant CNS-2145744 and the Office of Naval Research (ONR)
under Grants N00014-20-1-2128 and N00014-22-1-2671. Any
opinions, findings, and conclusions in this paper are those of the
authors and do not necessarily reflect the views of NSF or ONR.

References

[1] W. Mingren, “Bluetooth: Why Modern Tech is Named After Powerful
King of Denmark and Norway,” https://www.ancient-origins.net/history-
famous-people/bluetooth-why-modern-tech-named-after-powerful-
king-denmark-and-norway-007398, 2017, accessed: August 1, 2020. 1

[2] Bluetooth Special Interest Group, “2022 Bluetooth Market Update,” https:
//www.bluetooth.com/2022-market-update/?utm_campaign=bmu%
26utm_source=internal%26utm_medium=web%26utm_content=
2022bmu-resourcepopup, 2022, accessed: April 15, 2022. 1

[3] Armis, “BlueBorne Technical White Paper,” https://www.armis.com/
research/blueborne/, 2020, accessed: January 29, 2020. 1, 8, 9

[4] ——, “BLEEDINGBIT,” https://www.armis.com/bleedingbit/, 2020,
accessed: July 26, 2020. 1, 7, 8

[5] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “The KNOB is
Broken: Exploiting Low Entropy in the Encryption Key Negotiation
Of Bluetooth BR/EDR,” in Proceedings of the USENIX Security
Symposium (USENIX Security), 2019. 1, 3, 8, 12, 14

[6] ——, “Key Negotiation Downgrade Attacks on Bluetooth and Bluetooth
Low Energy,” ACM Transactions on Privacy and Security, vol. 23, no. 3,
2020. 1, 3, 4, 5, 8, 14

[7] ——, “BIAS: Bluetooth Impersonation AttackS,” in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2020. 1, 3, 7, 8, 12

[8] J. Wu, Y. Nan, V. Kumar, D. J. Tian, A. Bianchi, M. Payer, and
D. Xu, “BLESA: Spoofing Attacks against Reconnections in Bluetooth
Low Energy,” in Proceedings of the USENIX Workshop on Offensive
Technologies (WOOT), 2020. 1, 2, 8, 9, 10, 11, 12

[9] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, P. C. Johnson, and K. R. B.
Butler, “LBM: A Security Framework for Peripherals within the Linux
Kernel,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2019. 1, 11, 12

[10] D. Mantz, J. Classen, M. Schulz, and M. Hollick, “InternalBlue -
Bluetooth Binary Patching and Experimentation Framework,” in
Proceedings of the International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2019. 1, 7, 8, 10, 11

[11] J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein:
Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation
Targets,” in Proceedings of the USENIX Security Symposium (USENIX
Security), 2020. 1, 7, 8, 10, 11

[12] J. Wu, Y. Nan, V. Kumar, M. Payer, and D. Xu, “BlueShield: Detecting
Spoofing Attacks in Bluetooth Low Energy (BLE) Networks,” in
Proceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2020. 1, 10, 11

[13] J. Wu, R. Wu, D. Xu, D. J. Tian, and A. Bianchi, “Formal Model-Driven
Discovery of Bluetooth Protocol Design Vulnerabilities,” in Proceedings
of the IEEE Symposium on Security and Privacy (S&P), 2022. 2, 3, 5,
7, 8, 9, 10, 11, 12, 13, 14, 19

[14] M. K. Jangid, Y. Zhang, and Z. Lin, “Extrapolating formal analysis to
uncover attacks in bluetooth passkey entry pairing,” 2023. 2, 10, 11, 12

[15] C. Cremers and D. Jackson, “Prime, Order Please! revisiting Small
Subgroup and Invalid Curve Attacks on Protocols Using Diffie-Hellman,”
in Proceedings of the IEEE Computer Security Foundations Symposium
(CSF), 2019. 2, 3, 4, 7, 8, 10, 11, 12

[16] B. Blanchet, “Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif,” Foundations and Trends in Privacy
and Security, vol. 1, 2016. 2, 13

[17] “Code repo of our Mesh model,” https://github.com/purseclab/mesh-
model, 2023. 2, 13

[18] Y. Shaked and A. Wool, “Cracking the Bluetooth PIN,” in Proceedings
of the International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2005. 2, 3, 7, 8

[19] M. Jakobsson and S. Wetzel, “Security Weaknesses in Bluetooth,”
in Proceedings of the Conference on Topics in Cryptology: The
Cryptographer’s Track at RSA (CT-RSA), 2001. 2, 3, 7, 8

[20] D.-Z. Sun and X.-H. Li, “Vulnerability and Enhancement on Bluetooth
Pairing and Link Key Generation Scheme for Security Modes 2 and
3 ,” in Proceedings of the International Conference on Information and
Communications Security (ICICS), 2016. 2, 3, 7, 8

[21] T. Claverie and J. L. Esteves, “BlueMirror: Reflections on Bluetooth
Pairing and Provisioning Protocols,” in Proceedings of the IEEE Security
and Privacy Workshops (SPW), 2021. 2, 3, 4, 5, 7, 8, 14, 19

[22] J. Barnickel, J. Wang, and U. Meyer, “Implementing an Attack on Blue-
tooth 2.1+ Secure Simple Pairing in Passkey Entry Mode,” in Proceed-
ings of the IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), 2012. 2, 3, 4, 7, 8

[23] D.-Z. Sun, Y. Mu, and W. Susilo, “Man-in-the-Middle Attacks on Secure
Simple Pairing in Bluetooth Standard V5.0 and Its Countermeasure,”
Personal Ubiquitous Computing, vol. 22, no. 1, 2018. 2, 3, 4, 7, 8

[24] A. Y. Lindell, “Attacks on the Pairing Protocol of Bluetooth v2.1,” Black
Hat USA, 2008. 2, 3, 4, 7, 8

[25] E. Biham and L. Neumann, “Breaking the Bluetooth Pairing–The Fixed
Coordinate Invalid Curve Attack,” in Proceedings of the International
Conference on Selected Areas in Cryptography (SAC), 2019. 2, 3, 4, 7, 8

[26] Bluetooth Special Interest Group, “Bluetooth SIG Statement Regarding
the Bluetooth Impersonation Attacks (BIAS) Security Vulnerability,”
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/
bluetooth-security/bias-vulnerability/, 2021, accessed: July 1, 2022. 3

[27] M. Hermelin and K. Nyberg, “Correlation properties of the bluetooth
combiner,” in Proceedings of the International Conference on
Information Security and Cryptology (ICISC), 1999. 3, 4, 5, 8

[28] Y. Lu and S. Vaudenay, “Faster Correlation Attack on Bluetooth
Keystream Generator E0,” in Proceedings of the International
Cryptology Conference (CRYPTO), 2004. 3, 4, 5, 8

[29] S. Fluhrer and S. Lucks, “Analysis of the E0 Encryption System,” in
Proceedings of the International Conference on Selected Areas in
Cryptography (SAC), 2001. 3, 4, 5, 8

[30] Y. Lu, W. Meier, and S. Vaudenay, “The Conditional Correlation Attack:
A Practical Attack on Bluetooth Encryption,” in Proceedings of the
International Cryptology Conference (CRYPTO), 2005. 3, 4, 5, 8

[31] Y. Lu and S. Vaudenay, “Cryptanalysis of Bluetooth Keystream Generator
Two-Level E0,” in Proceedings of the International Conference on
the Theory and Application of Cryptology and Information Security
(Asiacrypt), 2004. 3, 4, 5, 8

15

 https://www.ancient-origins.net/history-famous-people/bluetooth-why-modern-tech-named-after-powerful-king-denmark-and-norway-007398
 https://www.ancient-origins.net/history-famous-people/bluetooth-why-modern-tech-named-after-powerful-king-denmark-and-norway-007398
 https://www.ancient-origins.net/history-famous-people/bluetooth-why-modern-tech-named-after-powerful-king-denmark-and-norway-007398
https://www.bluetooth.com/2022-market-update/?utm_campaign=bmu%26utm_source=internal%26utm_medium=web%26utm_content=2022bmu-resourcepopup
https://www.bluetooth.com/2022-market-update/?utm_campaign=bmu%26utm_source=internal%26utm_medium=web%26utm_content=2022bmu-resourcepopup
https://www.bluetooth.com/2022-market-update/?utm_campaign=bmu%26utm_source=internal%26utm_medium=web%26utm_content=2022bmu-resourcepopup
https://www.bluetooth.com/2022-market-update/?utm_campaign=bmu%26utm_source=internal%26utm_medium=web%26utm_content=2022bmu-resourcepopup
https://www.armis.com/research/blueborne/
https://www.armis.com/research/blueborne/
https://www.armis.com/bleedingbit/
https://github.com/purseclab/mesh-model
https://github.com/purseclab/mesh-model
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/bias-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/bias-vulnerability/

[32] M. Ryan, “Bluetooth: With Low Energy Comes Low Security,” in
Proceedings of the USENIX Workshop on Offensive Technologies
(WOOT), 2013. 3, 4, 7, 8

[33] J. K. Becker, D. Li, and D. Starobinski, “Tracking Anonymized
Bluetooth Devices,” Proceedings of Privacy Enhancing Technologies,
vol. 2019, no. 3, 2019. 3, 4, 6, 7, 8, 9

[34] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting Privacy of BLE
Device Users,” in Proceedings of the USENIX Security Symposium
(USENIX Security), 2016. 3, 4, 8, 9, 10, 11

[35] Bluetooth Special Interest Group, “Bluetooth SIG Statement Regarding
the ‘Predictable AuthValue in Bluetooth Mesh Provisioning Leads
to MITM’ Vulnerability,” https://www.bluetooth.com/learn-about-
bluetooth/key-attributes/bluetooth-security/predicatable-authvalue/,
2021, accessed: July 1, 2022. 3

[36] ——, “Bluetooth SIG Statement Regarding the ‘Malleable Commitment’
Vulnerability,” https://www.bluetooth.com/learn-about-bluetooth/key-
attributes/bluetooth-security/malleable/, 2021, accessed: July 1, 2022.
3, 5, 14

[37] ——, “Bluetooth SIG Statement Regarding the ‘Impersonation
Attack in Bluetooth Mesh Provisioning’ Vulnerability,” https:
//www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-
security/impersonation-mesh/, 2021, accessed: August 1, 2021. 3, 5, 14

[38] ——, “Bluetooth Core Specifications 1.0B,” 1999. 2
[39] ——, “Bluetooth Core Specifications v2.0 + EDR,” 2005. 2
[40] ——, “Bluetooth Core Specifications 3.0 + HS,” 2009. 2
[41] ——, “Bluetooth Core Specifications 5.3,” 2021. 2, 3, 4, 5, 7
[42] ——, “Bluetooth Core Specifications v2.1 + EDR,” 2007. 2
[43] K. Haataja and P. Toivanen, “Two Practical Man-In-The-Middle Attacks

on Bluetooth Secure Simple Pairing and Countermeasures,” IEEE
Transactions on Wireless Communications, vol. 9, no. 1, 2010. 2, 7, 8

[44] K. Hypponen and K. M. Haataja, ““Nino” man-in-the-middle attack
on bluetooth secure simple pairing,” in Proceedings of the IEEE/IFIP
International Conference in Central Asia on Internet (ICI), 2007. 2, 7, 8

[45] K. M. Haataja and K. Hypponen, “Man-In-The-Middle Attacks
on Bluetooth: a Comparative Analysis, a Novel Attack, and
Countermeasures,” in Proceedings of the International Symposium on
Communications, Control and Signal Processing (ISCCSP), 2008. 2, 7, 8

[46] T. R. Mutchukota, S. K. Panigrahy, and S. K. Jena, “Man-In-The-Middle
Attack and Its Countermeasure in Bluetooth Secure Simple Pairing,” in
Proceedings of the International Conference on Information Processing
(ICIP), 2011. 2, 7, 8

[47] M. A. Albahar, K. Haataja, and P. Toivanen, “Bluetooth MITM
Vulnerabilities: A Literature Review, Novel Attack Scenarios, Novel
Countermeasures, and Lessons Learned,” International Journal on
Information Technologies and Security, vol. 8, no. 4, 2016. 2, 7, 8, 12

[48] K. Haataja and P. Toivanen, “Practical Man-in-the-Middle Attacks
Against Bluetooth Secure Simple Pairing,” in Proceedings of the
International Conference on Wireless Communications, Networking and
Mobile Computing (WiCom), 2008. 2, 7, 8

[49] Bluetooth Special Interest Group, “Bluetooth Core Specifications 5.1,”
2019. 2, 4

[50] ——, “Bluetooth Core Specifications 4.0,” 2010. 3, 4
[51] C. Fontaine, E0 (Bluetooth), 2005, pp. 169–169. 3
[52] Bluetooth Special Interest Group, “Bluetooth Core Specifications 4.1,”

2013. 3
[53] National Institute of Standards and Technology, “Recommendation for

Block Cipher Modes of Operation: The CCM Mode for Authentication
and Confidentiality,” https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38c.pdf, 2004, accessed: August 1, 2020. 3

[54] Bluetooth Special Interest Group, “Bluetooth Core Specifications 5.2,”
2019. 3, 4

[55] M. Cominelli, F. Gringoli, P. Patras, M. Lind, and G. Noubir, “Even Black
Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization of
Bluetooth Classic Devices,” in Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2020. 3, 6, 8, 12

[56] National Institute of Standards and Technology, “Annex A:Approved
Security Functions for FIPS PUB 140-2, Security Requirements for
Cryptographic Modules,” https://csrc.nist.gov/csrc/media/publications/
fips/140/2/final/documents/fips1402annexa.pdf, 2019, accessed: August
1, 2020. 3

[57] Bluetooth Special Interest Group, “Bluetooth Core Specifications 4.2,”
2014. 4

[58] ——, “Bluetooth Core Specifications 5.4,” 2023. 4, 7, 12

[59] ——, “Bluetooth Core Specifications 5.0,” 2016. 4

[60] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering
Privacy Leakage in BLE Network Traffic of Wearable Fitness Trackers,”
in Proceedings of the International Workshop on Mobile Computing
Systems and Applications (HotMobile), 2016. 4, 6, 7, 8

[61] G. Celosia and M. Cunche, “Discontinued Privacy: Personal Data Leaks
in Apple Bluetooth-Low-Energy Continuity Protocols,” Proceedings
on Privacy Enhancing Technologies, 2020. 4

[62] Y. Zhang and Z. Lin, “When Good Becomes Evil: Tracking Bluetooth
Low Energy Devices via Allowlist-based Side Channel and Its
Countermeasure,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2022. 4, 7, 8

[63] Bluetooth Special Interest Group, “Mesh Profile Specification
1.0.1,” https://www.bluetooth.org/docman/handlers/downloaddoc.
ashx?doc_id=457092, 2019, accessed: June 10, 2020. 4, 5, 7, 8

[64] ——, “Bluetooth SIG Statement Regarding the ‘AuthValue Leak’
Vulnerability,” https://www.bluetooth.com/learn-about-bluetooth/key-
attributes/bluetooth-security/authvalue-leak/, 2021, accessed: July 1,
2022. 5, 14

[65] ——, “Traditional Profile Specifications,” https://www.bluetooth.com/
specifications/profiles-overview/, 2019, accessed: August 1, 2019. 5

[66] M. Weller, J. Classen, F. Ullrich, D. Waßmann, and E. Tews, “Lost and
Found: Stopping Bluetooth Finders from Leaking Private Information,”
in Proceedings of the 13th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec), 2020. 6

[67] The Hacker News, “The Hacker News,” https://thehackernews.com/,
2023. 6

[68] FeedSpot, “Top 50 Cyber Security News Websites for Information Se-
curity Pros,” https://blog.feedspot.com/cyber_security_news_websites/,
2023. 6

[69] D. Dolev and A. Yao, “On the Security of Public Key Protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, 1983. 6

[70] Ettus Research, “USRP B210 (Board Only),” https://www.ettus.com/
all-products/ub210-kit/, 2023. 6, 8

[71] Ubertooth Developers, “Ubertooth One,” https://github.com/
greatscottgadgets/ubertooth/wiki, 2019, accessed: August 1, 2019. 6, 8

[72] Amazon, “Long Range USB Bluetooth 5.1 Adapter for PC USB
Bluetooth Adapter Wireless Audio Dongle 328FT/100M 5.1 Bluetooth
Transmitter Receiver for Desktop Laptop PC with Windows
11/10/8/8.1/7,” https://www.amazon.com/Bluetooth-Adapter-Wireless-
Transmitter-Receiver/dp/B09KG7QQ5V/ref=sr_1_5?keywords=
bluetooth+dongleŹqid=1679078149Źsr=8-5, 2023. 6, 8

[73] N. Ludant, T. D. Vo-Huu, S. Narain, and G. Noubir, “Linking Bluetooth
LE & Classic and Implications for Privacy-Preserving Bluetooth-Based
Protocols,” in Proceeding of the IEEE Symposium on Security and
Privacy (S&P), 2021. 6, 7, 8, 14

[74] H. Givehchian, N. Bhaskar, E. R. Herrera, H. R. L. Soto, C. Dameff,
D. Bharadia, and A. Schulman, “Evaluating Physical-Layer BLE
Location Tracking Attacks on Mobile Devices,” in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2022. 6, 7, 8

16

https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/predicatable-authvalue/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/predicatable-authvalue/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/malleable/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/malleable/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/impersonation-mesh/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/impersonation-mesh/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/impersonation-mesh/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402annexa.pdf
https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402annexa.pdf
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/authvalue-leak/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/authvalue-leak/
https://www.bluetooth.com/specifications/profiles-overview/
https://www.bluetooth.com/specifications/profiles-overview/
https://thehackernews.com/
https://blog.feedspot.com/cyber_security_news_websites/
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/
https://github.com/greatscottgadgets/ubertooth/wiki
https://github.com/greatscottgadgets/ubertooth/wiki
https://www.amazon.com/Bluetooth-Adapter-Wireless-Transmitter-Receiver/dp/B09KG7QQ5V/ref=sr_1_5?keywords=bluetooth+dongle&qid=1679078149&sr=8-5
https://www.amazon.com/Bluetooth-Adapter-Wireless-Transmitter-Receiver/dp/B09KG7QQ5V/ref=sr_1_5?keywords=bluetooth+dongle&qid=1679078149&sr=8-5
https://www.amazon.com/Bluetooth-Adapter-Wireless-Transmitter-Receiver/dp/B09KG7QQ5V/ref=sr_1_5?keywords=bluetooth+dongle&qid=1679078149&sr=8-5

[75] R. Cayre, F. Galtier, G. Auriol, V. Nicomette, M. Kaâniche, and
G. Marconato, “InjectaBLE: Injecting malicious traffic into established
Bluetooth Low Energy connections,” in Proceedings of Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2021. 6, 7, 8

[76] T. Tucker, H. Searle, K. Butler, and P. Traynor, “Blue’s Clues: Practical
Discovery of Non-Discoverable Bluetooth Devices,” in Proceedings
of the IEEE Symposium on Security and Privacy (S&P), 2023. 6, 7, 8

[77] D. Spill and A. Bittau, “BlueSniff: Eve Meets Alice and Bluetooth,”
in Proceedings of the USENIX Workshop on Offensive Technologies
(WOOT), 2007. 6, 8, 12

[78] W. Albazrqaoe, J. Huang, and G. Xing, “Practical Bluetooth Traffic
Sniffing: Systems and Privacy Implications,” in Proceedings of the
International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2016. 6, 7, 8

[79] P. Staat, K. Jansen, C. Zenger, H. Elders-Boll, and C. Paar, “Analog
Physical-Layer Relay Attacks with Application to Bluetooth and Phase-
Based Ranging,” in Proceedings of the ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec), 2022. 6, 8

[80] H. Zhang, A. K. Maji, and S. Bagchi, “Privacy in the Mobile World: An
Analysis of Bluetooth Scan Traces,” in Proceedings of the Joint Workshop
on CPS and IoT Security and Privacy (CPSIOTSEC), 2020. 6, 7, 8, 9

[81] Apple, “Find My,” https://www.apple.com/icloud/find-my/, 2022,
accessed: January 10, 2022. 6

[82] ——, “Use Continuity to connect your Mac, iPhone, iPad, iPod touch,
and Apple Watch,” https://support.apple.com/en-us/HT204681, 2022,
accessed: January 10, 2022. 6

[83] A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who Can Find
My Devices? Security and Privacy of Apple’s Crowd-Sourced Bluetooth
Location Tracking System,” Proceedings on Privacy Enhancing
Technologies, vol. 2021, no. 3, 2021. 7, 8

[84] M. Stute, A. Heinrich, J. Lorenz, and M. Hollick, “Disrupting Continuity
of Apple’s Wireless Ecosystem Security: New Tracking, DoS, and
MitM Attacks on iOS and macOS Through Bluetooth Low Energy,
AWDL, and Wi-Fi,” in Proceeding of the USENIX Security Symposium
(USENIX Security), 2021. 7, 8

[85] J. Martin, D. Alpuche, K. Bodeman, L. Brown, E. Fenske, L. Foppe,
T. Mayberry, E. C. Rye, B. Sipes, and S. Teplov, “Handoff All Your
Privacy – A Review of Apple’s Bluetooth Low Energy Continuity
Protocol,” Proceedings on Privacy Enhancing Technologies, 2019. 7, 8

[86] A. Mariotto, A. Heinrich, D. Kreitschmann, G. Noubir, and M. Hollick,
“A Billion Open Houses for Eve and Mallory: MitM, DoS, and Tracking
Attacks on iOS and macOS Through Apple Wireless Direct Link,” in
Proceedings of the USENIX Security Symposium (USENIX Security),
2019. 7, 8

[87] D. Cross, J. Hoeckle, M. Lavine, J. Rubin, and K. Snow, “Detecting Non-
Discoverable Bluetooth Devices,” in Proceedings of the International
Conference on Critical Infrastructure Protection (ICCIP), 2007. 7, 8

[88] D. Cauquil, “Defeating Bluetooth Low Energy 5 PRNG for Fun and
Jamming,” DEF CON, 2019. 7, 8

[89] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurniawan,
“SweynTooth: Unleashing Mayhem over Bluetooth Low Energy,” in
Proceedings of the USENIX Annual Technical Conference (USENIX
ATC), 2020. 7, 8, 9, 10, 11, 12, 14

[90] M. E. Garbelini, S. Chattopadhyay, V. Bedi, S. Sun, and E. Kurniawan,
“BrakTooth: Causing Havoc on Bluetooth Link Manager via Directed
Fuzzing,” in Proceedings of the USENIX Security Symposium (USENIX
Security), 2022. 7, 8, 10, 11, 12, 14

[91] J. Classen, F. Gringoli, M. Hermann, and M. Hollick, “Attacks on
Wireless Coexistence: Exploiting Cross-Technology Performance
Features for Inter-Chip Privilege Escalation,” in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2022. 7, 8

[92] V. Kovah, “Finding New Bluetooth Low Energy Exploits via Reverse
Engineering Multiple Vendors’ Firmwares,” DEF CON, 2020. 7, 8

[93] J. Classen, A. Heinrich, R. Reith, and M. Hollick, “Evil Never Sleeps:
When Wireless Malware Stays On After Turning Off iPhones,” in
Proceedings of the ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), 2022. 7, 8

[94] M. von Tschirschnitz, L. Peuckert, F. Franzen, and J. Grossklags,
“Method Confusion Attack on Bluetooth Pairing,” in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2021. 7, 8, 9, 10, 12

[95] ANSSI, “Pairing Mode Confusion in BLE Passkey Entry,”
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/
bluetooth-security/confusion-in-ble-passkey/, 2022. 7, 8, 9, 12, 14

[96] ——, “Pairing Mode Confusion in BR/EDR,” https://www.
bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-
security/confusion-in-br-edr/, 2022. 7, 8, 9, 12, 14

[97] J. Classen and M. Hollick, “Happy MitM: fun and toys in every
Bluetooth device,” in Proceedings of the ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec), 2021. 7, 8

[98] Bluetooth Special Interest Group, “Bluetooth SIG Statement
Regarding the Method-Confusion Pairing Vulnerability,” https:
//www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-
security/method-vulnerability/, 2020, accessed: August 1, 2021. 7, 14

[99] A. Levi, E. Çetintaş, M. Aydos, Ç. K. Koç, and M. U. Ça ğlayan, “Relay
Attacks on Bluetooth Authentication and Solutions,” in Proceedings
of the International Symposium on Computer and Information Sciences
(ISCIS), 2004. 7, 8

[100] M. Beccaro and M. Collura, “Extracting the painful (blue)tooth,” DEF
CON, 2015. 8

[101] J. Ruge, “CVE-2020-0022 an Android 8.0-9.0 Bluetooth Zero-Click
RCE – BlueFrag,” https://insinuator.net/2020/04/cve-2020-0022-an-
android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/, 2020, accessed:
August 2, 2020. 8

[102] H. Yan, L. Qu, and D. Ke, “BrokenMesh: New Attack Surfaces of
Bluetooth Mesh,” DEF CON, 2022. 8, 9, 11, 12

[103] D. Heinze, J. Classen, and M. Hollick, “ToothPicker: Apple Picking
in the iOS Bluetooth Stack,” in Proceedings of the USENIX Workshop
on Offensive Technologies (WOOT), 2020. 8, 11

[104] G. S. Research, “Linux: Heap-Based Type Confusion in L2CAP
(BleedingTooth),” https://google.github.io/security-research/pocs/linux/
bleedingtooth/writeup.html, accessed: October 20, 2020. 8, 9

[105] M. Naveed, X.-y. Zhou, S. Demetriou, X. Wang, and C. A. Gunter,
“Inside Job: Understanding and Mitigating the Threat of External
Device Mis-Binding on Android,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2014. 8, 9, 11, 12

[106] C. Koh, J. Kwon, and J. Hur, “BLAP: Bluetooth Link Key Extraction
and Page Blocking Attacks,” in Proceedings of the Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2022. 8, 9

[107] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “BadBluetooth: Breaking
Android Security Mechanisms via Malicious Bluetooth Peripherals,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2019. 8, 9, 11, 12

[108] M. Ai, K. Xue, B. Luo, L. Chen, N. Yu, Q. Sun, and F. Wu, “Blacktooth:
Breaking through the Defense of Bluetooth in Silence,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2022. 8, 9

[109] P. Sivakumaran and J. Blasco, “A Study of the Feasibility of Co-located
App Attacks against BLE and a Large-Scale Analysis of the Current
Application-Layer Security Landscape,” in Proceedings of the USENIX
Security Symposium (USENIX Security), 2019. 8, 9, 11, 12

[110] J. Wang, F. Hu, Y. Zhou, Y. Liu, H. Zhang, and Z. Liu, “BlueDoor:
Breaking the Secure Information Flow via BLE Vulnerability,” in
Proceedings of the International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2020. 8, 9

17

https://www.apple.com/icloud/find-my/
https://support.apple.com/en-us/HT204681
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/confusion-in-ble-passkey/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/confusion-in-ble-passkey/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/confusion-in-br-edr/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/confusion-in-br-edr/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/confusion-in-br-edr/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/method-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/method-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/method-vulnerability/
https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/
https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-9-0-bluetooth-zero-click-rce-bluefrag/
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html

[111] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking Secure
Pairing of Bluetooth Low Energy Using Downgrade Attacks,” in Proceed-
ings of the USENIX Security Symposium (USENIX Security), 2020. 8, 9

[112] S. Jasek, “Gattacking Bluetooth smart devices,” in Black Hat USA, 2016.
8

[113] F. Álvarez, L. Almon, A.-S. Hahn, and M. Hollick, “Toxic Friends
in Your Network: Breaking the Bluetooth Mesh Friendship Concept,”
in Proceedings of the ACM Workshop on Security Standardisation
Research Workshop (SSR), 2019. 8

[114] D. Antonioli, N. O. Tippenhauer, K. Rasmussen, and M. Payer, “BLUR-
Tooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic
and Bluetooth Low Energy,” in Proceedings of the ACM Asia Conference
on Computer and Communications Security (ASIACCS), 2022. 8, 9, 14

[115] P. Kitsos, N. Sklavos, K. Papadomanolakis, and O. Koufopavlou,
“Hardware Implementation of Bluetooth Security,” IEEE Pervasive
Computing, vol. 2, no. 1, 2003. 8

[116] M. D. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, and C. E. Goutis,
“Comparison of the Hardware Implementation of Stream Ciphers,” Inter-
national Arab Journal of Information Technology, vol. 2, no. 4, 2005. 8

[117] BlueZ contributors, “BlueZ,” http://www.bluez.org/, 2019, accessed:
August 1, 2019. 8

[118] Linux contributors, “Kernel Part of BlueZ,” https://github.com/torvalds/
linux/tree/master/net/bluetooth, 2022, accessed: June 30, 2022. 9

[119] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, “The Android
Platform Security Model,” ACM Transactions on Privacy and Security,
vol. 24, no. 3, 2021. 9

[120] J. Huang, W. Albazrqaoe, and G. Xing, “BlueID: A Practical System
for Bluetooth Device Identification,” in Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM),
2014. 10, 11

[121] J. Symon, “Detecting Relay Attacks against Bluetooth Communications
on Android,” Ph.D. dissertation, The University of Waikato, 2018. 10, 11

[122] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and Hardware-independent
Firmware Testing via Automatic Peripheral Interface Modeling,” in
Proceedings of the USENIX Security Symposium (USENIX Security),
2020. 10

[123] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via
Augmented Process Emulation,” in Proceedings of the USENIX Security
Symposium (USENIX Security), 2019. 10

[124] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A Large-Scale
Analysis of the Security of Embedded Firmwares,” in Proceedings of
the USENIX Security Symposium (USENIX Security), 2014. 10

[125] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards Automated
Dynamic Analysis for Linux-based Embedded Firmware,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2016. 10

[126] J. Classen and M. Hollick, “Inside Job: Diagnosing Bluetooth Lower
Layers Using off-the-Shelf Devices,” in Proceedings of the ACM
Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), 2019. 10, 11

[127] F. Fowze, D. J. Tian, G. Hernandez, K. Butler, and T. Yavuz, “ProXray:
Protocol Model Learning and Guided Firmware Analysis,” IEEE
Transactions on Software Engineering, 2019. 10, 11

[128] H. Wen, Z. Lin, and Y. Zhang, “FirmXRay: Detecting Bluetooth Link
Layer Vulnerabilities from Bare-Metal Firmware,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2020. 10, 11

[129] J. Wu, R. Wu, D. Antonioli, M. Payer, N. O. Tippenhauer, D. Xu,
D. J. Tian, and A. Bianchi, “LIGHTBLUE: Automatic Profile-Aware
Debloating of Bluetooth Stacks,” in Proceedings of the USENIX Security
Symposium (USENIX Security), 2021. 10, 11, 12

[130] B. Blanchet, “Automatic Proof of Strong Secrecy for Security Protocols,”
in Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2004. 10

[131] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN Prover
for the Symbolic Analysis of Security Protocols,” in Proceedings of the In-
ternational Conference on Computer Aided Verification (CAV), 2013. 10

[132] R. Chang and V. Shmatikov, “Formal Analysis of Authentication in
Bluetooth Device Pairing,” Proceedings of the LICS/ICALP Workshop
on Foundations of Computer Security and Automated Reasoning for
Security Protocol Analysis (FCS-ARSPA), 2007. 10, 11

[133] M. Shi, J. Chen, K. He, H. Zhao, M. Jia, and R. Du, “Formal Analysis
and Patching of BLE-SC Pairing,” in Proceedings of the USENIX
Security Symposium (USENIX Security), 2023. 10, 11

[134] I. Karim, A. Al Ishtiaq, S. R. Hussain, and E. Bertino, “BLEDiff:
Scalable and Property-Agnostic Noncompliance Checking for BLE
Implementations,” in Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2023. 11

[135] D.-Z. Sun and L. Sun, “On Secure Simple Pairing in Bluetooth Standard
v5. 0-Part I: Authenticated Link Key Security and Its Home Automation
and Entertainment Applications,” Sensors, vol. 19, no. 5, 2019. 11

[136] K. Arai and T. Kaneko, “Formal Verification of Improved Numeric
Comparison Protocol for Secure Simple Pairing in Bluetooth Using
ProVerif,” in Proceedings of the International Conference on Security
and Management (SAM), 2014. 11

[137] P. Wang, “Bluetooth Low Energy-privacy enhancement for
advertisement,” Master’s thesis, Norwegian University of Science and
Technology, 2014. 11

[138] A. Hassidim, Y. Matias, M. Yung, and A. Ziv, “Ephemeral
Identifiers: Mitigating Tracking & Spoofing Threats to BLE Beacons,”
https://developers.google.com/beacons/eddystone-eid-preprint.pdf,
2016, accessed: August 1, 2019. 11

[139] D. Heinze, J. Classen, and F. Rohrbach, “MagicPairing: Apple’s Take on
Securing Bluetooth Peripherals,” in Proceedings of the ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec), 2020.
11

[140] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic Fingerprinting of
Vulnerable BLE IoT Devices with Static UUIDs from Mobile Apps,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2019. 11

[141] H. Park, C. K. Nkuba, S. Woo, and H. Lee, “L2Fuzz: Discovering
Bluetooth L2CAP Vulnerabilities Using Stateful Fuzz Testing,” in
Proceedings of Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2022. 11, 12

[142] T. OConnor and D. Reeves, “Bluetooth Network-Based Misuse
Detection,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2008. 11, 12

[143] T. Peters, T. J. Pierson, S. Sen, J. Camacho, and D. Kotz, “Recurring
Verification of Interaction Authenticity Within Bluetooth Networks,”
in Proceedings of the ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec), 2021. 11, 12

[144] H. Krawczyk, Perfect Forward Secrecy, 2005, pp. 457–458. 11

[145] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network Intrusion Detection for IoT Security Based on Learning
Techniques,” IEEE Communications Surveys and Tutorials, vol. 21,
no. 3, 2019. 11

[146] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for
security enforcement in iot,” in Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS), 2017. 11

[147] P. A. Porras and A. Valdes, “Live Traffic Analysis of TCP/IP Gateways,”
in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 1998. 11

18

http://www.bluez.org/
https://github.com/torvalds/linux/tree/master/net/bluetooth
https://github.com/torvalds/linux/tree/master/net/bluetooth
https://developers.google.com/beacons/eddystone-eid-preprint.pdf

[148] A. W. Moore and K. Papagiannaki, “Toward the Accurate Identification
of Network Applications,” in Proceedings of International Workshop
on Passive and Active Network Measurement, 2005. 11

[149] Bluetooth Special Interest Group, “Advanced Audio Distribution
v1.3.2,” https://www.bluetooth.org/docman/handlers/downloaddoc.
ashx?doc_id=457083, 2019, accessed: January 17, 2020. 12

[150] F. Paul, “Fixing, upgrading and patching IoT devices can be a real
nightmare,” https://www.networkworld.com/article/3222651/fixing-
upgrading-and-patching-iot-devices-can-be-a-real-nightmare.html,
2017, accessed: August 1, 2019. 12

[151] J. Borgini, “6 common challenges to IoT OTA updates,”
https://www.techtarget.com/iotagenda/tip/6-common-challenges-
to-IoT-OTA-updates, 2020, accessed: July 16, 2022. 12

[152] X. Zou, “IoT devices are hard to patch: Here’s why—and how to deal
with security,” https://techbeacon.com/security/iot-devices-are-hard-
patch-heres-why-how-deal-security, 2017, accessed: July 16, 2022. 12

[153] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “ProVerif 2.04:
Automatic Cryptographic Protocol Verifier, User Manual and Tutorial,”
https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf, 2021, accessed:
March 1, 2022. 14

[154] H. Cho, D. Ippolito, and Y. W. Yu, “Contact Tracing Mobile Apps for
COVID-19: Privacy Considerations and Related Trade-offs,” 2020. 14

[155] P. C. Ng, P. Spachos, and K. Plataniotis, “COVID-19 and Your
Smartphone: BLE-based Smart Contact Tracing,” 2020. 14

[156] Google, “Exposure Notifications: Using technology to help public
health authorities fight COVID-19,” https://www.google.com/covid19/
exposurenotifications/, 2020, accessed: November 1, 2020. 14

[157] C. for Disease Control and Prevention, “Coronavirus (COVID-19),”
https://www.cdc.gov/coronavirus/2019-ncov/index.html, 2020, accessed:
November 1, 2020. 14

[158] Bluetooth Special Interest Group, “Human Interface Device
Profile,” https://www.bluetooth.org/docman/handlers/downloaddoc.
ashx?doc_id=309012, 2020, accessed: August 1, 2020. 14

[159] J. Weinberger and A. P. Felt, “A Week to Remember: The Impact of
Browser Warning Storage Policies,” in Proceedings of the USENIX
Security Symposium (USENIX Security), 2016. 14

[160] C. Thompson, M. Shelton, E. Stark, M. Walker, E. Schechter, and A. P.
Felt, “The Web’s Identity Crisis: Understanding the Effectiveness of
Website Identity Indicators,” in Proceedings of the USENIX Security
Symposium (USENIX Security), 2019. 14

[161] Archie Pusaka, “[PATCH v3] Bluetooth: Check for encryption key size
on connect,” https://lore.kernel.org/linux-bluetooth/20200922155548.v3.
1.I67a8b8cd4def8166970ca37109db46d731b62bb6Žchangeid/, 2020. 14

Appendix A.
Detailed Result of Mesh Verification (Table 5)

Appendix B.
Simplified Model Implementation in ProVerif

//Simplified implementation of key refresh
//(the configuration client)
let key_refresh_send() = (...//Send new keys
let kencd = AES_CCM(newk, devkey, devn) in
let nkencd = AES_CCM(kencd, enck, net_n) in
let pecb = e(pri_key, concat(iv, nkencd)) in
out(ch, (obfuscate(net_n, pecb), nkencd));
//Send notification
let net_n2 = net_n(ttl1, seq2, addr_p, iv) in
let devn2 = dev_n(seq2, addr_p, addr, iv) in
let nencd = AES_CCM(note1, devkey, devn2) in
let notencd = AES_CCM(nencd, enck, net_n2) in
let pecb = e(pri_key, concat(iv, notencd)) in
out(ch, (obfuscate(net_n2, pecb), notencd))).

//Simplified IV update procedure (the sender side)
let iv_update_send() = (//Send new IV
get mesh_net_key_c(addr, netkey) in
let bkey = k1(netkey, s1(nkbk), P) in
let mac = AES_CMAC(bkey, newiv) in
out(ch, (newiv, mac));
//Send notification
let mac2 = AES_CMAC(bkey, note2) in
out(ch, (note2, mac2))).

//Simplified friendship establishment
//implementation (low power device)
let friend_request() = (... //Send friend request
let enck= enck(k2(netkey, ZERO)) in
let pri_key = prik(k2(netkey, ZERO)) in
let net_n = net_n(ttl1, seq1, addr_d, iv) in
let nkencd = AES_CCM((t2, lpct), enck, net_n) in
let pecb = e(pri_key, concat(iv, nkencd)) in
out(ch, (obfuscate(net_n, pecb), nkencd));
//Receive friend offer
in(ch, (obfs: bitstring, d: bitstring));
let pecb = e(pri_key, concat(iv, d)) in
let network_n = deobfuscate(obfs, pecb) in
let seq2 = secondconcat9(network_n) in
let friaddr = thirdconcat9(network_n) in
let (=t1, frict: bitstring) = sdec(d, enck,
network_n) in

let t = concat(concat(concat(addr_d, friaddr),
lpct), frict) in

insert mesh_friend_key_lp(friaddr,
enck(k2(netkey, t)), prik(k2(netkey, t)))).

TABLE 5: Result, corresponding attack (if violated), and runtime of the property verification. ✓: property holds; ✗: the violation
is caused by known vulnerability.

Property M1 M2 M3 M4 M5 M6 M7 M8 Fix
P1 ✗/I/13s ✗/I/6s ✗/I/3s ✗/I/3s ✗/I/20s ✗/I/12s ✗/I/4s ✗/M/8s ✓/–/8s
P2 ✓/–/14s ✓/–/6s ✓/–/3s ✓/–/3s ✓/–/29s ✓/–/13s ✓/–/8s ✗/M/9s ✓/–/8s
P3 ✓/–/12s ✓/–/5s ✓/–/3s ✓/–/2s ✗/I/23s ✗/I/10s ✗/I/4s ✗/M/9s ✓/–/8s
P4 ✓/–/12s ✓/–/5s ✓/–/3s ✓/–/2s ✓/–/20s ✓/–/9s ✓/–/4s ✗/M/11s ✓/–/8s
P5 ✓/–/1h33m58s ✓/–/53m1s ✓/–/13m51s ✓/–/13m19s ✗/I/279h32m11s ✗/I/44h4m53s ✗/I/10h25m27s ✗/M/307h2m15s ✓/–/18m11s
P6 ✓/–/13s ✓/–/7s ✓/–/3s ✓/–/4s ✗/I/54s ✗/I/27s ✗/I/10s ✗/M/7s ✓/–/9s
P7 ✓/–/14s ✓/–/7s ✓/–/3s ✓/–/3s ✗/I/58s ✗/I/24s ✗/I/8s ✗/M/8s ✓/–/9s
P8 ✓/–/1h32m4s ✓/–/50m56s ✓/–/13m46s ✓/–/14m ✗/I/292h11m23s ✗/I/42h8m53s ✗/I/10h16m16s ✗/M/95h12m42s ✓/–/19m14s
P9 ✓/–/1h32m32s ✓/–/50m26s ✓/–/13m52s ✓/–/14m19s ✗/I/282h6m4s ✗/I/42h27m7s ✗/I/12h47m3s ✗/M/96h39m12s ✓/–/18m56s
P10 ✓/–/27s ✓/–/20s ✓/–/7s ✓/–/12s ✗/I/3m43s ✗/I/1m48s ✗/I/38s ✗/M/2m26s ✓/–/20s
P11 ✓/–/27s ✓/–/20s ✓/–/7s ✓/–/11s ✗/I/3m40s ✗/I/1m45s ✗/I/35s ✗/M/2m33s ✓/–/20s

I: The impersonation attack presented in the existing work (BlueMAN [13] and BlueMirror [21]). M: MitM attack.

19

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457083
https://www.networkworld.com/article/3222651/fixing-upgrading-and-patching-iot-devices-can-be-a-real-nightmare.html
https://www.networkworld.com/article/3222651/fixing-upgrading-and-patching-iot-devices-can-be-a-real-nightmare.html
https://www.techtarget.com/iotagenda/tip/6-common-challenges-to-IoT-OTA-updates
https://www.techtarget.com/iotagenda/tip/6-common-challenges-to-IoT-OTA-updates
https://techbeacon.com/security/iot-devices-are-hard-patch-heres-why-how-deal-security
https://techbeacon.com/security/iot-devices-are-hard-patch-heres-why-how-deal-security
https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf
https://www.google.com/covid19/exposurenotifications/
https://www.google.com/covid19/exposurenotifications/
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=309012
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=309012
https://lore.kernel.org/linux-bluetooth/20200922155548.v3.1.I67a8b8cd4def8166970ca37109db46d731b62bb6@changeid/
https://lore.kernel.org/linux-bluetooth/20200922155548.v3.1.I67a8b8cd4def8166970ca37109db46d731b62bb6@changeid/

Appendix C.
Meta-Review

C.1. Summary

This paper attempts to provide a systemization of the field
of Bluetooth security, describing what has been done, what has
not been done, and what should be done. The paper discussess
both attacks and their defenses, and provides insights based
on their systemization. The apaper also directly addresses one
identified area of limited research – a lack of defenses for
Bluetooth Mesh – by conducting a formal analysis of Mesh.

C.2. Scientific Contributions

∙ Provides a valuable step forward in an established field.
∙ Establishes a new research direction.

C.3. Reasons for Acceptance

1) This paper provides a valuable step forward in Bluetooth
security research by providing a comprehensive study of
over twenty years of Bluetooth security-relevant papers
covering both attacks and defenses. This paper would
also form a good starting point for others to learn about
Bluetooth security if they also want to perform research on
it. So, the paper clearly achieves an important SoK goal.

2) The paper has also performed a formal analysis of
Bluetooth Mesh protocols and identified two prior attacks.
Creating a better formal model of Mesh Bluetooth also
appears useful. The paper also discusses some formal
modeling aspects that can also be used to model and
analyze other protocols.

3) The key takeaways and identified future research directions
offer opportunities for advancing knowledge, developing

innovative security analysis and defese techniques, and
contributing to Bluetooth security research.

C.4. Noteworthy Concerns

1) The paper discusses three kinds of threat models: DY, DC,
and UM. However, the formal analysis was performed
only for DY. It would significantly improve the paper
if similar formal analysis can be done for other threat
models. If the aurhots choose not to perform any more
analysis, they should provide justifications why DY-based
analysis is enough for this paper.

2) Some key takeaways and future work directions seem to
cover mostly known observations. It would be better to
provide more insights into Bluetooth security.

Appendix D.
Response to the Meta-Review

1) We agree that adding other threat models (i.e., DC and
UM) to our mesh model can significantly improve the
paper. However, compared to the DY threat model, the
attacker’s capabilities in these threat models are not
well-defined. For example, in the DC model, the attacker
may have root permission, and it is also possible that the
attacker only has the Bluetooth permission. As such, we
believe it is necessary to discuss all these possible attackers’
capabilities and how to model these capabilities in these
two threat models. Because of the complexity of modeling
these two threat models, we think this task is outside the
scope of this paper, and we leave it as future work.

2) We agree that some future directions are applicable to
other domains as well. However, as mentioned, Bluetooth
presents specific characteristics that make exploring these
topics particularly interesting and challenging.

20

	Introduction
	Bluetooth Evolution
	Bluetooth Classic
	Security Evolution
	Privacy Evolution
	Status Quo of BC Security and Privacy

	Bluetooth Low Energy
	Security Evolution
	Privacy Evolution
	Status Quo of BLE Security and Privacy

	Bluetooth Mesh
	Security Evolution
	Privacy Evolution
	Status Quo of Mesh Security and Privacy

	Observations

	Systematization Matrix
	Systematization of Attacks
	Physical Layer
	Signal Eavesdropping
	Signal Injection

	Firmware Layer
	Firmware Exploitation
	Breaking Key Sharing
	Authentication Bypass
	Breaking Encryption

	Host Layer
	Host Exploitation
	Illegal Service Access
	Privacy Violation

	Attacks Takeaways
	Systematization of Defenses
	Physical Layer
	Firmware Layer
	Firmware Fuzzing and Analysis
	Formal Verification
	Protocol Enhancement

	Host Layer
	Host Fuzzing and Analysis
	Traffic Analysis and Filtering
	System Hardening

	Defenses Takeaways
	Comprehensive Formal Analysis of Mesh
	Model Design and Implementation
	Evaluation

	Future Directions
	Conclusion
	References
	Appendix A: Detailed Result of Mesh Verification (tab:result)
	Appendix B: Simplified Model Implementation in ProVerif
	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix D: Response to the Meta-Review

