DnD: Decompiling Deep Neural Network Compiled Binary

Ruoyu Wu!, Taegyu Kim?, Dave (Jing) Tian!, Antonio Bianchi', and Dongyan Xu

1

'Purdue University, 2 The Pennsylvania State University
{wul377, daveti, antoniob, dxu}@purdue.edu, tgkim@psu.edu

Abstract

The usage of Deep Neural Networks (DNNs) has steadily in-
creased in recent years. Especially when used in edge devices
and embedded systems, dedicated DNN compilers are used
to compile DNNs into binaries for the best performance. Se-
curity applications such as DNN model extraction, white-box
adversarial sample generation, and DNN model patching be-
come possible when a DNN model is accessible. However,
these techniques cannot be applied to compiled DNN binaries.
No decompilers can recover a high-level representation of a
DNN model from its compiled binary code.

In this paper, we introduce DnD, the first ISA- and compiler-
agnostic DNN decompiler. DnD uses the customized symbolic
execution to lift the DNN binary into symbolic expressions
represented in a novel intermediate representation (IR), which
abstracts the high-level mathematical DNN operations in an
ISA- and compiler-agnostic fashion. Then, DnD matches the
lifted mathematical DNN operations with template mathe-
matical DNN operations and recovers hyper-parameters and
parameters of all the identified DNN operators, as well as
the overall DNN topology. We evaluate DnD on different
DNN binaries compiled by two different compilers (Glow and
TVM) and for three different ISAs (Thumb, AArch64, and
x86-64). and show that DnD can perfectly recover their model
information. Moreover, using DND, we successfully reverse
engineer the DNN models from the binary deployed on real-
world micro-controllers and attack them with the white-box
adversarial machine learning techniques.

1 Background

1.1 DNNs

Figure | shows a snippet of a DNN model. As shown in the
figure, DNNs are composed of interconnected DNN operators.
Each DNN operator takes the output of previous operators as
its input and conducts mathematical operations based on its
operator type and parameters.

Black Hat Europe 2022, London, United Kingdom

W(64x32x1x1
B(64.
dilations = 1,1

AveragePool

kernel_shape = 3,3
pads=0,0,1,1
strides =2, 2

Figure 1: A snippet of ResNet vl model in the ONNX format

There are numerous types of DNN operators with differ-
ent high-level mathematical semantics. For example, there
are activation operators (e.g., Relu), feature extraction opera-
tors (e.g., Convolution), and down-sampling operators (e.g.,
Average-pool). There are 174 different DNN operators de-
fined in ONNX [1], an open standard for ML interoperability
developed by Linux Foundation.

A DNN is defined by its hyper-parameters and parameters.
DNN’s hyper-parameters define the network architecture and
how each operator functions, including the DNN topology, the
type of each operator, and the attributes of each operator. The
attributes of operators define their detailed configurations. For
instance, as shown inside each operator in the figure above,
Convolution (i.e., Conv) operator’s attributes include the ker-
nel shape, the pad size, and the stride size. The parameters are
the variables that are learned during the training process (e.g.,
weights and bias).

1.2 DNN compilers

Multiple dedicated DNN compilers (e.g., Glow by Facebook,
TVM by Apache, XLA by Google) exist to ease the deploy-
ment of DNN models on various devices. These DNN com-
pilers are used in many real-world products, including edge
devices and embedded systems. For example, to support the
DNN model deployment on micro-controllers, NXP Semi-
conductors integrate a customized Glow compiler into its
MCUXpresso SDK [10].

DNN compilers can be classified into two categories based
on the compilation scheme: interpreter-based and ahead-of-
time (AOT) schemes. Interpreter-based compilers (e.g., TFLM
[4]) generate a DNN configuration file describing the DNN
model. At runtime, a generic interpreter parses the DNN con-
figuration file and invokes the corresponding DNN opera-
tor implementations from a generic runtime library. While
generic, this scheme introduces space and time overhead since
it requires interpreting the configuration file and loading the
DNN runtime library. Moreover, it relies on a generic DNN
operator library; thus, missing optimization opportunities of
specific operator instances (e.g., kernel size equals 1,1 for the
Conv-1 shown in the figure).

On the contrary, AOT compilers generate the operator in-
stances specialized for their context information, such as at-
tributes. For instance, Conv-1 and Conv-2 in the above figure
are both Convolution operators, but they are compiled into
distinct binary functions with different control/data flows, be-
cause of their different attributes. Thanks to the AOT scheme’s
low overhead, most DNN compilers support this scheme to
deploy a DNN on edge devices whose hardware resources are
limited.

1.3 Adversarial attacks

Adversarial attacks, inducing a DNN to misclassify an input,
can be classified into two categories: black-box attacks and
white-box attacks. Black-box attacks do not require attackers
to have prior knowledge of the victim DNN (e.g., model hyper-
parameters and parameters). While white-box attacks require
such knowledge to generate adversarial examples, they are
more effective and efficient than black-box attacks.

2 DnD Design and Implementation

{ DNN)

| Binary | \
'fmY| : (@owo r |
perator \

1 T0110 |_> Location @ Operator S.ummary !

| |otw01]| P Generation I
~— ___Identification g ‘
—————— [
High-level N * \
|
|
A
A

I Representation | (e
| ZoXd, [@ AST Matching © AST Matching
| SRedie

I L L \

DND PIPELINE

Figure 2: Pipeline of DND

DnD is designed to decompile DNN binaries where a
compiled DNN model is embedded. DnD targets DNN bi-
naries compiled by the AOT compilation scheme running on
CPU/MCU without hardware accelerators (e.g., NPU, GPU).
The figure above depicts the overview of DnD. Specifically,
DnD is composed of four components: (1) DNN Operator
Function Location Identification, (2) Operator Summary Gen-
eration, (3) Abstract syntax tree (AST) matching, and (4) DNN
Model Lifting.

DnD first takes a DNN binary and then locates the func-
tions that implement all the DNN operators. To locate DNN
operators, DnD relies on functions’ patterns, such as heavy
usage of nested loops and vectorized computations.

In the second step, for each identified DNN operator func-
tion, DnD captures and summarizes its mathematical seman-
tics in operator summaries. Each operator summary is en-
coded in intermediate representation (IR) that can represent
the mathematical semantics of DNN operators. Specifically,
DnD conducts selective symbolic execution to extracts sym-
bolic expressions from each DNN operator (e.g., output[i] =
input[i] * params[i]), and stores them in an operator summary
in our IR format.

Next, DnD identifies the type (e.g., convolution) of each
DNN operator through AST matching. Before DnD analyzes
DNN binaries, we pre-generate reference ASTs of all the DNN
operators supported by DNN compilers. After operator sum-
maries are generated, DnD converts every symbolic expression
in each operator summary into an AST, and recognizes the
operator type of this AST using the reference ASTs if a match
is found!

Finally, DnD recovers the entire DNN model in the ONNX
format. Specifically, DnD first recovers each DNN operator’s
attributes and parameters by analyzing its operator summary
and recovered operator type. Then, DnD recovers the DNN
topology (i.e., the interconnection between DNN operators)
by identifying the data dependencies between DNN operators
using data flow analysis.

We implement the DnD prototype using Python on top of
angr [12]. DnD relies on angr to disassemble binary and re-
cover the control flow graph (CFG) for the following symbolic
execution analysis. DnD generates the extracted DNN model
in ONNX format using the onnx library [2].

3 Evaluation

3.1 Generality Evaluation

We evaluate the generality of DnD by counting how many
widely-used DNN models can be supported. We consider a
DNN model supported when all of its DNN operators are
supported. For this purpose, we evaluate how many DNN
operators DnD can create reference ASTs for.

We collect 37 DNN models from the ONNX Model Zoo [3]
and the MLPerf Tiny Benchmarks [7], covering many appli-
cation scenarios such as image classification (e.g., ResNet
v1), object detection (e.g., YOLO), and natural language pro-
cessing (e.g., GPT-2). These 37 DNN models use 70 different
DNN operators in total. Our evaluation shows that DnD sup-
ports 59 DNN operators out of the used 70 DNN operators
(84%), which enables DnD to fully support 30 DNN models
out of the collected 37 DNN models (81%).

3.2 Correctness Evaluation

We evaluate the correctness of DnD by checking if a DnD-
decompiled DNN model is equivalent to the original model. In
our experiments, both the decompiled and the original models
are considered equivalent if their inference results are identical
given the N=10000 test inputs. We use MNIST [15], ResNet
v1 [5] and MobileNets v2 [8] as our test DNN models. To
generate a diverse set of binaries (in terms of ISAs and compil-
ers), we compile these three DNN models for three ISAs (i.e.,
Thumb, AArch64, and x86-64) and with two different popular
DNN compilers (i.e., Glow and TVM). Our evaluation shows
that all the decompiled DNN models are identical to those of
the original DNN models for all the tested inputs, achieving
100

4 Case Study

We show two case studies: (1) how DnD can be used to steal
DNN model hyper-parameters and parameters from a DNN
application running on a real-world micro-controller, and (2)
how the decompiled DNN model can be leveraged to boost
adversarial attacks.

We apply DnD to the NXP i.MX RT1050-EVK board [11]
as the real-world micro-controller. This board uses an Arm
Cortex-M7 processor and Thumb ISA and supports the DNN
model deployment through NXP’s eIQ ML software develop-
ment environment [9]. The ResNet vl DNN model is deployed
on the board in our case study.

To steal the DNN model, we first obtain the DNN binary by
dumping the memory image using GDB. Then, we use DnD to
decompile the dumped binary and recover its DNN model. We
verify the correctness of the recovered DNN model by com-
paring the inference results over the same inputs (N=1000)
between the decompiled DNN model running on the desk-
top and the original DNN model running on the board. Our
evaluation shows DnD can perfectly recover the ResNet v1
model.

With the DNN model decompiled by DnD, we can boost
adversarial attacks by launching white-box adversarial attacks
against the ResNet vl DNN model, and reduce the inference
accuracy from 88.4% with original inputs to 11.4% with adver-
sarial inputs, whereas black-box adversarial attacks can only
degrade the inference accuracy to 57.3%.

5 Related Work

There are some works on reverse engineering domain-specific
binary. For instance, researchers proposed reverse engineering
techniques targeting smart contract [16], control firmware [6]
and Bluetooth firmware [13]. However, those techniques can-
not capture the mathematical semantics of compiled DNN
models. This work is also presented in [14]

References
[1] Linux Foundation. ONNX. https://onnx.ai/.

[2] Linux Foundation. ONNX. https://github.com/
onnx/onnx.

[3] Linux Foundation. ONNX model zoo.
github.com/onnx/models.

https://

[4] Google. Tensorflow lite for microcontrollers. https:
//www.tensorflow.org/lite/microcontrollers.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[6] Taegyu Kim, Aolin Ding, Sriharsha Etigowni, Pengfei
Sun, Jizhou Chen, Luis Garcia, Saman Zonouz, Dongyan
Xu, and Dave (Jing) Tian. Reverse engineering and
retrofitting robotic aerial vehicle control firmware using
dispatch. In Proceedings of the ACM International Con-
ference on Mobile Systems, Applications, and Services
(MobiSys), 2022.

[7] MLCommons. Mlperf™ tiny deep learning bench-
marks for embedded devices. https://github.com/
mlcommons/tiny.

[8] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2018.

[9] NXP Semiconductors. eiq® glow ahead of time
user guide. https://www.nxp.com/docs/en/user—
guide/EIQGLOWAOTUG. pdf.

[10] NXP Semiconductors. eig® ml software devel-
opment environment. https://www.nxp.com/
design/software/development-software/eig-
ml-development-environment :EIQ.

[11] NXP Semiconductors. imx rtl1050 evaluation Kkit.
https://www.nxp.com/design/development-
boards/i-mx-evaluation-and-development-
boards/i-mx-rt1050-evaluation-kit:
MIMXRT1050-EVK.

[12] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2016.

https://onnx.ai/
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/onnx/models
https://github.com/onnx/models
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://github.com/mlcommons/tiny
https://github.com/mlcommons/tiny
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1050-evaluation-kit:MIMXRT1050-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1050-evaluation-kit:MIMXRT1050-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1050-evaluation-kit:MIMXRT1050-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1050-evaluation-kit:MIMXRT1050-EVK

[13]

[14]

[15]

[16]

Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias
Payer, Nils Ole Tippenhauer, Dongyan Xu, Dave Jing
Tian, and Antonio Bianchi. LIGHTBLUE: Automatic
Profile-Aware debloating of bluetooth stacks. In Pro-
ceedings of the USENIX Security Symposium (Usenix
SEC), 2021.

Ruoyu Wu, Taegyu Kim, Dave (Jing) Tian, Antonio
Bianchi, and Dongyan Xu. DnD: A Cross-Architecture
deep neural network decompiler. In 31st USENIX Se-
curity Symposium (USENIX Security 22), pages 2135—
2152, Boston, MA, August 2022. USENIX Association.

Corinna Cortes Yann LeCun and Chris Burges. Mnist
handwritten digit database. http://yann.lecun.com/
exdb/mnist/.

Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason,
Andrew Miller, and Michael Bailey. Erays: reverse engi-
neering ethereum’s opaque smart contracts. In Proceed-
ings of the USENIX Security Symposium (Usenix SEC),
2018.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Background
	DNNs
	DNN compilers
	Adversarial attacks

	DnD Design and Implementation
	Evaluation
	Generality Evaluation
	Correctness Evaluation

	Case Study
	Related Work

